Suppr超能文献

使用噪声图估计网络(NoiseMapNet)快速重建SMS bSSFP心肌灌注图像:与并行成像和迭代重建的直接比较

Fast reconstruction of SMS bSSFP myocardial perfusion images using noise map estimation network (NoiseMapNet): a head-to-head comparison with parallel imaging and iterative reconstruction.

作者信息

Adam Naledi Lenah, Kowalik Grzegorz, Tyler Andrew, Mooiweer Ronald, Neofytou Alexander Paul, McElroy Sarah, Kunze Karl, Speier Peter, Stäb Daniel, Neji Radhouene, Nazir Muhummad Sohaib, Razavi Reza, Chiribiri Amedeo, Roujol Sébastien

机构信息

School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.

MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom.

出版信息

Front Cardiovasc Med. 2024 Jul 11;11:1350345. doi: 10.3389/fcvm.2024.1350345. eCollection 2024.

Abstract

BACKGROUND

Simultaneous multi-slice (SMS) bSSFP imaging enables stress myocardial perfusion imaging with high spatial resolution and increased spatial coverage. Standard parallel imaging techniques (e.g., TGRAPPA) can be used for image reconstruction but result in high noise level. Alternatively, iterative reconstruction techniques based on temporal regularization (ITER) improve image quality but are associated with reduced temporal signal fidelity and long computation time limiting their online use. The aim is to develop an image reconstruction technique for SMS-bSSFP myocardial perfusion imaging combining parallel imaging and image-based denoising using a novel noise map estimation network (NoiseMapNet), which preserves both sharpness and temporal signal profiles and that has low computational cost.

METHODS

The proposed reconstruction of SMS images consists of a standard temporal parallel imaging reconstruction (TGRAPPA) with motion correction (MOCO) followed by image denoising using NoiseMapNet. NoiseMapNet is a deep learning network based on a 2D Unet architecture and aims to predict a noise map from an input noisy image, which is then subtracted from the noisy image to generate the denoised image. This approach was evaluated in 17 patients who underwent stress perfusion imaging using a SMS-bSSFP sequence. Images were reconstructed with (a) TGRAPPA with MOCO (thereafter referred to as TGRAPPA), (b) iterative reconstruction with integrated motion compensation (ITER), and (c) proposed NoiseMapNet-based reconstruction. Normalized mean squared error (NMSE) with respect to TGRAPPA, myocardial sharpness, image quality, perceived SNR (pSNR), and number of diagnostic segments were evaluated.

RESULTS

NMSE of NoiseMapNet was lower than using ITER for both myocardium (0.045 ± 0.021 vs. 0.172 ± 0.041,  < 0.001) and left ventricular blood pool (0.025 ± 0.014 vs. 0.069 ± 0.020,  < 0.001). There were no significant differences between all methods for myocardial sharpness ( = 0.77) and number of diagnostic segments ( = 0.36). ITER led to higher image quality than NoiseMapNet/TGRAPPA (2.7 ± 0.4 vs. 1.8 ± 0.4/1.3 ± 0.6,  < 0.001) and higher pSNR than NoiseMapNet/TGRAPPA (3.0 ± 0.0 vs. 2.0 ± 0.0/1.3 ± 0.6,  < 0.001). Importantly, NoiseMapNet yielded higher pSNR ( < 0.001) and image quality ( < 0.008) than TGRAPPA. Computation time of NoiseMapNet was only 20s for one entire dataset.

CONCLUSION

NoiseMapNet-based reconstruction enables fast SMS image reconstruction for stress myocardial perfusion imaging while preserving sharpness and temporal signal profiles.

摘要

背景

同时多层(SMS)稳态自由感应衰减(bSSFP)成像可实现具有高空间分辨率和更大空间覆盖范围的心肌灌注成像。标准并行成像技术(如TGRAPPA)可用于图像重建,但会导致高噪声水平。另外,基于时间正则化的迭代重建技术(ITER)可改善图像质量,但会降低时间信号保真度且计算时间长,限制了其在线使用。目的是开发一种用于SMS-bSSFP心肌灌注成像的图像重建技术,该技术结合并行成像和基于图像的去噪,使用新型噪声图估计网络(NoiseMapNet),既能保留清晰度又能保留时间信号特征,且计算成本低。

方法

所提出的SMS图像重建包括具有运动校正(MOCO)的标准时间并行成像重建(TGRAPPA),然后使用NoiseMapNet进行图像去噪。NoiseMapNet是基于二维Unet架构的深度学习网络,旨在从输入的噪声图像预测噪声图,然后从噪声图像中减去该噪声图以生成去噪图像。该方法在17例接受使用SMS-bSSFP序列进行心肌灌注成像的患者中进行了评估。图像使用以下方法重建:(a)具有MOCO的TGRAPPA(此后称为TGRAPPA),(b)具有集成运动补偿的迭代重建(ITER),以及(c)所提出的基于NoiseMapNet的重建。评估了相对于TGRAPPA的归一化均方误差(NMSE)、心肌清晰度、图像质量、感知信噪比(pSNR)和诊断节段数量。

结果

对于心肌(0.045±0.021对0.172±0.041,<0.001)和左心室血池(0.025±0.014对0.069±0.020,<0.001),NoiseMapNet的NMSE均低于使用ITER。所有方法在心肌清晰度(=0.77)和诊断节段数量(=0.36)方面均无显著差异。ITER导致的图像质量高于NoiseMapNet/TGRAPPA(2.7±0.4对1.8±0.4/1.3±0.6,<0.001),pSNR高于NoiseMapNet/TGRAPPA(3.0±0.0对2.0±0.0/1.3±0.6,<0.001)。重要的是,NoiseMapNet产生的pSNR(<0.001)和图像质量(<0.008)高于TGRAPPA。对于一个完整数据集,NoiseMapNet的计算时间仅为20秒。

结论

基于NoiseMapNet的重建能够快速进行SMS图像重建,用于心肌灌注成像,同时保留清晰度和时间信号特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ec8/11269255/6e52d0b367f4/fcvm-11-1350345-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验