Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru.
Physiother Res Int. 2024 Apr;29(2). doi: 10.1002/pri.2072. Epub 2024 Feb 6.
Fibromyalgia (FM) is associated with altered descending pain modulatory pathways, which can be assessed through Conditioned Pain Modulation (CPM). In this study, we aimed to explore the relationship between CPM and self-reported baseline characteristics in patients with fibromyalgia. We also performed a longitudinal analysis exploring CPM as a potential predictor of clinical improvement over time in individuals with FM.
We performed cross-sectional univariable and multivariable analyses of the relationship between CPM and other variables in 41 FM patients. We then performed longitudinal analyses, building linear mixed effects models with pain in the Visual Analogue Scale (VAS) as the dependent variable, and testing for the interaction between time and CPM. We also tested the interaction between CPM and time in models using other outcomes, such as the revised Fibromyalgia Impact Questionnaire (FIQR) and Quality of Life Scale (QOLs).
We found no association between CPM and other demographic and clinical variables in the univariable analysis. We found a statistically significant association in the multivariable linear regression model between CPM and the QOLs at baseline, after controlling for age, sex, and duration of symptoms. In the longitudinal analyses, we found that CPM is an effect modifier for clinical improvement over time for the pain VAS, QOLs and FIQR: individuals with low-efficient CPM at baseline have a different (improved) pattern of response over time when compared to those with high-efficient CPM.
Our findings suggest that CPM is not a reliable biomarker of clinical manifestations in chronic pain patients during cross-sectional assessments. However, our results are consistent with previous findings that CPM can be used to predict the evolution of clinical pain over time. We expect that our findings will help in the selection of patients with the best profile to respond to specific interventions and assist clinicians in tailoring pain treatments.
纤维肌痛(FM)与下行疼痛调制通路的改变有关,这可以通过条件疼痛调制(CPM)来评估。在这项研究中,我们旨在探讨 CPM 与纤维肌痛患者基线自我报告特征之间的关系。我们还进行了一项纵向分析,探讨 CPM 是否可以作为个体 FM 随时间推移临床改善的潜在预测指标。
我们对 41 名 FM 患者的 CPM 与其他变量之间的关系进行了横断面单变量和多变量分析。然后,我们进行了纵向分析,构建了线性混合效应模型,以视觉模拟量表(VAS)中的疼痛为因变量,并测试时间和 CPM 之间的交互作用。我们还在使用其他结果(如修订后的纤维肌痛影响问卷(FIQR)和生活质量量表(QOLs))的模型中测试了 CPM 和时间之间的交互作用。
在单变量分析中,我们没有发现 CPM 与其他人口统计学和临床变量之间存在关联。在多变量线性回归模型中,在控制年龄、性别和症状持续时间后,CPM 与基线时的 QOLs 存在统计学显著关联。在纵向分析中,我们发现 CPM 是随时间推移疼痛 VAS、QOLs 和 FIQR 临床改善的效应修饰剂:与高效率 CPM 相比,基线时低效率 CPM 的个体随时间的反应模式不同(有所改善)。
我们的研究结果表明,CPM 在横断面评估中不是慢性疼痛患者临床表现的可靠生物标志物。然而,我们的结果与之前的研究结果一致,即 CPM 可用于预测临床疼痛随时间的演变。我们希望我们的研究结果将有助于选择具有最佳反应特征的患者来应对特定干预措施,并帮助临床医生量身定制疼痛治疗。