Zhang Shichao, Liu Yijiang, Xie Yuhan, Ding Chenchun, Zuo Renjie, Guo Zhenzhen, Qi Shiyong, Fu Tingting, Chen Weibin
Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China.
The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China.
ACS Biomater Sci Eng. 2024 Aug 12;10(8):5274-5289. doi: 10.1021/acsbiomaterials.4c00776. Epub 2024 Jul 26.
Breast cancer represents a substantial contributor to mortality rates among women with cancer. Chemical dynamic therapy is a promising anticancer strategy that utilizes the Fenton reaction to transform naturally occurring hydrogen peroxide (HO) into hydroxyl radicals (OH). Additionally, cancer immunotherapy using immune drugs, such as imiquimod (R837), has shown promise in activating T cells to kill tumor cells. In this study, we proposed a FeO@R837 smart nanoplatform that can trigger the Fenton reaction and induce immune responses in breast cancer treatment. Furthermore, we performed transcriptome sequencing on breast cancer samples and used the R package (limma) to analyze differential expression profiles and select differentially expressed genes (DEGs). We obtained clinical information and RNA expression matrix data from The Cancer Genome Atlas database to perform survival analysis and identify prognostic-related genes (PRGs) and molecular subtypes with distinct prognoses. We used the TIMER 2.0 web and other methods to determine the tumor immune microenvironment and immune status of different prognostic subtypes. We identified DPGs by taking the intersection of DEGs and PRGs and performed functional analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, to elucidate potential mechanisms. Subsequently, we constructed a protein-protein interaction network using the STRING database to visualize the interactions between the DPGs. We screened hub genes from the DPGs using the Cytoscape plugin and identified six hub genes: CD3E, GZMK, CD27, SH2D1A, ZAP70, and TIGIT. Our results indicate that these six key genes regulate immune cell recruitment to increase T-cell cytotoxicity and kill tumors. Targeting these key genes can enhance immunotherapy and improve the breast cancer prognosis.
乳腺癌是导致女性癌症死亡率的重要因素。化学动力疗法是一种很有前景的抗癌策略,它利用芬顿反应将天然存在的过氧化氢(HO)转化为羟基自由基(OH)。此外,使用咪喹莫特(R837)等免疫药物的癌症免疫疗法在激活T细胞以杀死肿瘤细胞方面已显示出前景。在本研究中,我们提出了一种FeO@R837智能纳米平台,其可在乳腺癌治疗中触发芬顿反应并诱导免疫反应。此外,我们对乳腺癌样本进行了转录组测序,并使用R包(limma)分析差异表达谱并选择差异表达基因(DEG)。我们从癌症基因组图谱数据库获得临床信息和RNA表达矩阵数据,以进行生存分析并鉴定预后相关基因(PRG)和具有不同预后的分子亚型。我们使用TIMER 2.0网站和其他方法来确定不同预后亚型的肿瘤免疫微环境和免疫状态。我们通过取DEG和PRG的交集来鉴定DPG,并进行功能分析,包括基因本体论和京都基因与基因组百科全书富集分析,以阐明潜在机制。随后,我们使用STRING数据库构建蛋白质 - 蛋白质相互作用网络,以可视化DPG之间的相互作用。我们使用Cytoscape插件从DPG中筛选出枢纽基因,并鉴定出六个枢纽基因:CD3E、GZMK、CD27、SH2D1A、ZAP70和TIGIT。我们的结果表明,这六个关键基因调节免疫细胞募集以增加T细胞细胞毒性并杀死肿瘤。靶向这些关键基因可增强免疫疗法并改善乳腺癌预后。