Arrigoni Alessia, Brambilla Luigi, Bertarelli Chiara, Saporiti Carlo, Castiglioni Chiara
Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, Milan, Italy.
Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy.
Appl Spectrosc. 2024 Dec;78(12):1279-1294. doi: 10.1177/00037028241265140. Epub 2024 Jul 26.
Vibrational spectroscopy allows the investigation of structural properties of pristine and doped poly(3-hexylthiophene-2,5-diyl) (P3HT) in highly anisotropic materials, such as electrospun micro- and nanofibers. Here, we compare several approaches for doping P3HT fibers. We have selected two different electron acceptor molecules as dopants, namely iodine and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). In the case of iodine, we have explored the doping of the fibers according to several different procedures, i.e., by sequential doping both in vapors and in solution, and with a novel promising one-step method, which exploits the mixing of the dopant to the electrospinning feed solution. Polarized infrared (IR) spectroscopy experiments prove the orientation of P3HT chains, with the polymer backbone mainly running parallel to the fiber axis. After doping, P3HT fibers show very strong and polarized doping-induced IR active vibrations (IRAVs), which are the spectroscopic signature of the structure relaxation induced by the charged defects (polarons), thus providing an unambiguous proof of the effective doping. Raman spectroscopy complements the IR evidence: The Raman spectrum shows a clearly recognizable shift of the main band, the so-called effective conjugation coordinate band, in the doped samples. A simple protocol, which quantifies the evolution of the IRAV bands with time, allows monitoring of the doping stability over time and confirms that F4TCNQ is by far superior to iodine.
振动光谱法可用于研究高度各向异性材料(如电纺微米和纳米纤维)中原位和掺杂的聚(3-己基噻吩-2,5-二亚基)(P3HT)的结构特性。在此,我们比较了几种掺杂P3HT纤维的方法。我们选择了两种不同的电子受体分子作为掺杂剂,即碘和2,3,5,6-四氟-7,7,8,8-四氰基对苯二醌二甲烷(F4TCNQ)。对于碘,我们根据几种不同的程序探索了纤维的掺杂,即通过在蒸汽和溶液中顺序掺杂,以及一种新颖且有前景的一步法,该方法利用了掺杂剂与电纺丝进料溶液的混合。偏振红外(IR)光谱实验证明了P3HT链的取向,聚合物主链主要平行于纤维轴。掺杂后,P3HT纤维显示出非常强且偏振的掺杂诱导红外活性振动(IRAVs),这是由带电缺陷(极化子)引起的结构弛豫的光谱特征,从而提供了有效掺杂的明确证据。拉曼光谱补充了红外证据:拉曼光谱显示在掺杂样品中主带(即所谓的有效共轭坐标带)有明显可识别的位移。一个简单的协议可以量化IRAV带随时间的演变,从而可以监测掺杂随时间的稳定性,并证实F4TCNQ远比碘优越。