Mantica Giorgio
Center for Non-Linear and Complex Systems, Università dell'Insubria, Via Valleggio 11, 22100 Como, Italy.
Istituto Nazionale di Alta Matematica "F. Severi", GNFM Gruppo Nazionale per la Fisica Matematica, P. le Aldo Moro 5, 00185 Rome, Italy.
Entropy (Basel). 2024 Jun 30;26(7):572. doi: 10.3390/e26070572.
The multi-particle Arnol'd cat is a generalization of the Hamiltonian system, both classical and quantum, whose period evolution operator is the renowned map that bears its name. It is obtained following the Joos-Zeh prescription for decoherence by adding a number of scattering particles in the configuration space of the cat. Quantization follows swiftly if the Hamiltonian approach, rather than the semiclassical approach, is adopted. The author has studied this system in a series of previous works, focusing on the problem of quantum-classical correspondence. In this paper, the dynamics of this system are tested by two related yet different indicators: the time autocorrelation function of the canonical position and the out-of-time correlator of position and momentum.
多粒子阿诺德猫是哈密顿系统的一种推广,包括经典和量子版本,其周期演化算符是著名的以其命名的映射。它是按照约斯 - 泽的退相干方法,通过在猫态的构型空间中添加多个散射粒子得到的。如果采用哈密顿方法而非半经典方法,量子化过程会很快实现。作者在之前的一系列工作中研究了这个系统,重点关注量子 - 经典对应问题。在本文中,该系统的动力学通过两个相关但不同的指标进行检验:正则位置的时间自相关函数以及位置与动量的超时间关联函数。