Suppr超能文献

混沌系统中的李雅普诺夫指数与非时序关联函数的增长率

Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System.

作者信息

Rozenbaum Efim B, Ganeshan Sriram, Galitski Victor

机构信息

Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA.

Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA.

出版信息

Phys Rev Lett. 2017 Feb 24;118(8):086801. doi: 10.1103/PhysRevLett.118.086801. Epub 2017 Feb 21.

Abstract

It was proposed recently that the out-of-time-ordered four-point correlator (OTOC) may serve as a useful characteristic of quantum-chaotic behavior, because, in the semiclassical limit ℏ→0, its rate of exponential growth resembles the classical Lyapunov exponent. Here, we calculate the four-point correlator C(t) for the classical and quantum kicked rotor-a textbook driven chaotic system-and compare its growth rate at initial times with the standard definition of the classical Lyapunov exponent. Using both quantum and classical arguments, we show that the OTOC's growth rate and the Lyapunov exponent are, in general, distinct quantities, corresponding to the logarithm of the phase-space averaged divergence rate of classical trajectories and to the phase-space average of the logarithm, respectively. The difference appears to be more pronounced in the regime of low kicking strength K, where no classical chaos exists globally. In this case, the Lyapunov exponent quickly decreases as K→0, while the OTOC's growth rate may decrease much slower, showing a higher sensitivity to small chaotic islands in the phase space. We also show that the quantum correlator as a function of time exhibits a clear singularity at the Ehrenfest time t_{E}: transitioning from a time-independent value of t^{-1}lnC(t) at t<t_{E} to its monotonic decrease with time at t>t_{E}. We note that the underlying physics here is the same as in the theory of weak (dynamical) localization [Aleiner and Larkin, Phys. Rev. B 54, 14423 (1996)PRBMDO0163-182910.1103/PhysRevB.54.14423; Tian, Kamenev, and Larkin, Phys. Rev. Lett. 93, 124101 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.124101] and is due to a delay in the onset of quantum interference effects, which occur sharply at a time of the order of the Ehrenfest time.

摘要

最近有人提出,无序四点关联函数(OTOC)可能是量子混沌行为的一个有用特征,因为在半经典极限ℏ→0时,其指数增长率类似于经典李雅普诺夫指数。在此,我们计算了经典和量子受驱转子(一个教科书式的驱动混沌系统)的四点关联函数C(t),并将其初始时刻的增长率与经典李雅普诺夫指数的标准定义进行比较。利用量子和经典的论证,我们表明OTOC的增长率和李雅普诺夫指数通常是不同的量,分别对应于经典轨迹相空间平均发散率的对数和对数的相空间平均值。在低踢动强度K的区域,这种差异似乎更为明显,在该区域不存在全局经典混沌。在这种情况下,随着K→0,李雅普诺夫指数迅速减小,而OTOC的增长率可能下降得慢得多,表明对相空间中的小混沌岛具有更高的敏感性。我们还表明,作为时间函数的量子关联函数在埃伦费斯特时间t_E处表现出明显的奇异性:从t < t_E时t^{-1}lnC(t)的与时间无关的值转变为t > t_E时随时间的单调下降。我们注意到这里的基本物理与弱(动态)局域化理论相同[阿莱纳和拉金,《物理评论B》54,14423(1996年)PRBMDO0163 - 182910.1103/PhysRevB.54.14423;田、卡梅涅夫和拉金,《物理评论快报》93,124101(2004年)PRLTAO0031 - 900710.1103/PhysRevLett.93.124101],并且是由于量子干涉效应开始的延迟,这种效应在埃伦费斯特时间量级的时刻急剧发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验