Suppr超能文献

通过个性化PageRank实现有效的时态图学习

Effective Temporal Graph Learning via Personalized PageRank.

作者信息

Liao Ziyu, Liu Tao, He Yue, Lin Longlong

机构信息

College of Computer and Information Science, Southwest University, Chongqing 400715, China.

出版信息

Entropy (Basel). 2024 Jul 10;26(7):588. doi: 10.3390/e26070588.

Abstract

Graph representation learning aims to map nodes or edges within a graph using low-dimensional vectors, while preserving as much topological information as possible. During past decades, numerous algorithms for graph representation learning have emerged. Among them, proximity matrix representation methods have been shown to exhibit excellent performance in experiments and scale to large graphs with millions of nodes. However, with the rapid development of the Internet, information interactions are happening at the scale of billions every moment. Most methods for similarity matrix factorization still focus on static graphs, leading to incomplete similarity descriptions and low embedding quality. To enhance the embedding quality of temporal graph learning, we propose a temporal graph representation learning model based on the matrix factorization of Time-constrained Personalize PageRank (TPPR) matrices. TPPR, an extension of personalized PageRank (PPR) that incorporates temporal information, better captures node similarities in temporal graphs. Based on this, we use Single Value Decomposition or Nonnegative Matrix Factorization to decompose TPPR matrices to obtain embedding vectors for each node. Through experiments on tasks such as link prediction, node classification, and node clustering across multiple temporal graphs, as well as a comparison with various experimental methods, we find that graph representation learning algorithms based on TPPR matrix factorization achieve overall outstanding scores on multiple temporal datasets, highlighting their effectiveness.

摘要

图表示学习旨在使用低维向量对图中的节点或边进行映射,同时尽可能保留拓扑信息。在过去几十年中,出现了许多用于图表示学习的算法。其中,邻近矩阵表示方法在实验中表现出优异的性能,并且能够扩展到具有数百万节点的大型图。然而,随着互联网的快速发展,信息交互每时每刻都在数十亿的规模上发生。大多数相似性矩阵分解方法仍然专注于静态图,导致相似性描述不完整且嵌入质量较低。为了提高时态图学习的嵌入质量,我们提出了一种基于时间约束个性化PageRank(TPPR)矩阵分解的时态图表示学习模型。TPPR是个性化PageRank(PPR)的扩展,它纳入了时间信息,能更好地捕捉时态图中的节点相似性。基于此,我们使用奇异值分解或非负矩阵分解来分解TPPR矩阵,以获得每个节点的嵌入向量。通过对多个时态图上的链接预测、节点分类和节点聚类等任务进行实验,并与各种实验方法进行比较,我们发现基于TPPR矩阵分解的图表示学习算法在多个时态数据集上总体得分优异,突出了它们的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8346/11275858/83ce8fbdb0b3/entropy-26-00588-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验