Suppr超能文献

基于DGO-SVM方法的蛋白质-蛋白质相互作用网络重建

Reconstruction of Protein-Protein Interaction Network Based on DGO-SVM Method.

作者信息

Hao Tong, Zhang Mingzhi, Song Zhentao, Gou Yifei, Wang Bin, Sun Jinsheng

机构信息

Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.

出版信息

Curr Issues Mol Biol. 2024 Jul 12;46(7):7353-7372. doi: 10.3390/cimb46070436.

Abstract

is an economically important aquatic animal. Its regulatory mechanisms underlying many biological processes are still vague due to the lack of systematic analysis tools. The protein-protein interaction network (PIN) is an important tool for the systematic analysis of regulatory mechanisms. In this work, a novel machine learning method, DGO-SVM, was applied to predict the protein-protein interaction (PPI) in , and its PIN was reconstructed. With the domain, biological process, molecular functions and subcellular locations of proteins as the features, DGO-SVM showed excellent performance in , humans and five aquatic crustaceans, with 92-96% accuracy. With DGO-SVM, the PIN of was reconstructed, containing 14,703 proteins and 7,243,597 interactions, in which 35,604 interactions were associated with 566 novel proteins mainly involved in the response to exogenous stimuli, cellular macromolecular metabolism and regulation. The DGO-SVM demonstrated that the biological process, molecular functions and subcellular locations of proteins are significant factors for the precise prediction of PPIs. We reconstructed the largest PIN for , which provides a systematic tool for the regulatory mechanism analysis. Furthermore, the novel-protein-related PPIs in the PIN may provide important clues for the mechanism analysis of the underlying specific physiological processes in .

摘要

是一种具有重要经济价值的水生动物。由于缺乏系统的分析工具,其许多生物学过程的调控机制仍不明确。蛋白质-蛋白质相互作用网络(PIN)是系统分析调控机制的重要工具。在这项工作中,一种新的机器学习方法DGO-SVM被应用于预测[动物名称]中的蛋白质-蛋白质相互作用(PPI),并重建了其PIN。以蛋白质的结构域、生物学过程、分子功能和亚细胞定位为特征,DGO-SVM在[动物名称]、人类和五种水生甲壳类动物中表现出优异的性能,准确率达92%-96%。利用DGO-SVM,重建了[动物名称]的PIN,包含14703个蛋白质和7243597个相互作用,其中35604个相互作用与566个新蛋白质相关,这些新蛋白质主要参与对外源刺激的反应、细胞大分子代谢和调节。DGO-SVM表明,蛋白质的生物学过程、分子功能和亚细胞定位是精确预测PPI的重要因素。我们重建了[动物名称]最大的PIN,为调控机制分析提供了一个系统工具。此外,PIN中与新蛋白质相关的PPI可能为[动物名称]潜在特定生理过程的机制分析提供重要线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/093b/11276262/cf842ddc2973/cimb-46-00436-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验