Suppr超能文献

用于显著谷物害虫检测的级联聚合卷积网络

Cascaded Aggregation Convolution Network for Salient Grain Pests Detection.

作者信息

Yu Junwei, Chen Shihao, Liu Nan, Zhai Fupin, Pan Quan

机构信息

Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China.

Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China.

出版信息

Insects. 2024 Jul 22;15(7):557. doi: 10.3390/insects15070557.

Abstract

Pest infestation poses significant threats to grain storage due to pests' behaviors of feeding, respiration, excretion, and reproduction. Efficient pest detection and control are essential to mitigate these risks. However, accurate detection of small grain pests remains challenging due to their small size, high variability, low contrast, and cluttered background. Salient pest detection focuses on the visual features that stand out, improving the accuracy of pest identification in complex environments. Drawing inspiration from the rapid pest recognition abilities of humans and birds, we propose a novel Cascaded Aggregation Convolution Network (CACNet) for pest detection and control in stored grain. Our approach aims to improve detection accuracy by employing a reverse cascade feature aggregation network that imitates the visual attention mechanism in humans when observing and focusing on objects of interest. The CACNet uses VGG16 as the backbone network and incorporates two key operations, namely feature enhancement and feature aggregation. These operations merge the high-level semantic information and low-level positional information of salient objects, enabling accurate segmentation of small-scale grain pests. We have curated the GrainPest dataset, comprising 500 images showcasing zero to five or more pests in grains. Leveraging this dataset and the MSRA-B dataset, we validated our method's efficacy, achieving a structure S-measure of 91.9%, and 90.9%, and a weighted F-measure of 76.4%, and 91.0%, respectively. Our approach significantly surpasses the traditional saliency detection methods and other state-of-the-art salient object detection models based on deep learning. This technology shows great potential for pest detection and assessing the severity of pest infestation based on pest density in grain storage facilities. It also holds promise for the prevention and control of pests in agriculture and forestry.

摘要

害虫侵扰对粮食储存构成重大威胁,因为害虫具有取食、呼吸、排泄和繁殖等行为。高效的害虫检测与防治对于降低这些风险至关重要。然而,由于小型粮食害虫体型小、变异性高、对比度低且背景杂乱,准确检测它们仍然具有挑战性。显著害虫检测聚焦于突出的视觉特征,提高了复杂环境中害虫识别的准确性。借鉴人类和鸟类快速的害虫识别能力,我们提出了一种新颖的级联聚合卷积网络(CACNet),用于储存粮食中的害虫检测与防治。我们的方法旨在通过采用反向级联特征聚合网络来提高检测精度,该网络模仿人类在观察和关注感兴趣对象时的视觉注意力机制。CACNet以VGG16作为骨干网络,并结合了两个关键操作,即特征增强和特征聚合。这些操作融合了显著对象的高级语义信息和低级位置信息,能够准确分割小规模的粮食害虫。我们整理了GrainPest数据集,其中包含500张展示谷物中零至五只或更多害虫的图像。利用这个数据集和MSRA - B数据集,我们验证了我们方法的有效性,结构S度量分别达到了91.9%和90.9%,加权F度量分别达到了76.4%和91.0%。我们的方法显著超越了传统的显著性检测方法以及其他基于深度学习的先进显著对象检测模型。这项技术在粮食储存设施中基于害虫密度进行害虫检测和评估害虫侵扰严重程度方面显示出巨大潜力。它在农林害虫防治方面也具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df17/11276982/0265a268bd7a/insects-15-00557-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验