Nigro Valentina, Angelini Roberta, Buratti Elena, Colantonio Claudia, D'Amato Rosaria, Dinelli Franco, Franco Silvia, Limosani Francesca, Montereali Rosa Maria, Nichelatti Enrico, Piccinini Massimo, Vincenti Maria Aurora, Ruzicka Barbara
ENEA C.R. Frascati, Nuclear Department, Via Enrico Fermi 45, 00044 Frascati, Italy.
Institute for Complex Systems, National Research Council (ISC-CNR), Sapienza University of Rome, P.le A. Moro 2, 00185 Rome, Italy.
Gels. 2024 Jul 18;10(7):473. doi: 10.3390/gels10070473.
Stimuli-responsive microgels have attracted great interest in recent years as building blocks for fabricating smart surfaces with many technological applications. In particular, PNIPAM microgels are promising candidates for creating thermo-responsive scaffolds to control cell growth and detachment via temperature stimuli. In this framework, understanding the influence of the solid substrate is critical for tailoring microgel coatings to specific applications. The surface modification of the substrate is a winning strategy used to manage microgel-substrate interactions. To control the spreading of microgel particles on a solid surface, glass substrates are coated with a PEI or an APTES layer to improve surface hydrophobicity and add positive charges on the interface. A systematic investigation of PNIPAM microgels spin-coated through a double-step deposition protocol on pristine glass and on functionalised glasses was performed by combining wettability measurements and Atomic Force Microscopy. The greater flattening of microgel particles on less hydrophilic substrates can be explained as a consequence of the reduced shielding of the water-substrate interactions that favors electrostatic interactions between microgels and the substrate. This approach allows the yielding of effective control on microgel coatings that will help to unlock new possibilities for their application in biomedical devices, sensors, or responsive surfaces.
近年来,刺激响应性微凝胶作为构建具有多种技术应用的智能表面的基础材料,引起了人们极大的兴趣。特别是,聚N-异丙基丙烯酰胺(PNIPAM)微凝胶有望用于创建热响应支架,以通过温度刺激来控制细胞生长和脱离。在此框架下,了解固体基质的影响对于将微凝胶涂层定制用于特定应用至关重要。基质的表面改性是一种用于调控微凝胶与基质相互作用的成功策略。为了控制微凝胶颗粒在固体表面的铺展,玻璃基质上涂覆有聚乙烯亚胺(PEI)或3-氨丙基三乙氧基硅烷(APTES)层,以提高表面疏水性并在界面上添加正电荷。通过结合润湿性测量和原子力显微镜,对通过两步沉积协议旋涂在原始玻璃和功能化玻璃上的PNIPAM微凝胶进行了系统研究。微凝胶颗粒在亲水性较低的基质上更大程度的扁平化可以解释为水与基质相互作用的屏蔽作用减弱的结果,这有利于微凝胶与基质之间的静电相互作用。这种方法能够有效控制微凝胶涂层,这将有助于为其在生物医学设备、传感器或响应表面中的应用开启新的可能性。