文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

提高渗透率数据的准确性以获得预测能力:评估使用细胞单层进行的实验中的变异性来源。

Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers.

作者信息

Pires Cristiana L, Moreno Maria João

机构信息

Coimbra Chemistry Center-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.

Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.

出版信息

Membranes (Basel). 2024 Jul 14;14(7):157. doi: 10.3390/membranes14070157.


DOI:10.3390/membranes14070157
PMID:39057665
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11278619/
Abstract

The ability to predict the rate of permeation of new compounds across biological membranes is of high importance for their success as drugs, as it determines their efficacy, pharmacokinetics, and safety profile. In vitro permeability assays using Caco-2 monolayers are commonly employed to assess permeability across the intestinal epithelium, with an extensive number of apparent permeability coefficient () values available in the literature and a significant fraction collected in databases. The compilation of these values for large datasets allows for the application of artificial intelligence tools for establishing quantitative structure-permeability relationships (QSPRs) to predict the permeability of new compounds from their structural properties. One of the main challenges that hinders the development of accurate predictions is the existence of multiple values for the same compound, mostly caused by differences in the experimental protocols employed. This review addresses the magnitude of the variability within and between laboratories to interpret its impact on QSPR modelling, systematically and quantitatively assessing the most common sources of variability. This review emphasizes the importance of compiling consistent data and suggests strategies that may be used to obtain such data, contributing to the establishment of robust QSPRs with enhanced predictive power.

摘要

预测新化合物跨生物膜渗透速率的能力对于其作为药物的成功至关重要,因为这决定了它们的疗效、药代动力学和安全性。使用Caco-2单层细胞的体外渗透性测定通常用于评估跨肠上皮的渗透性,文献中有大量的表观渗透系数()值,并且有相当一部分收集在数据库中。为大型数据集汇编这些值允许应用人工智能工具来建立定量结构-渗透关系(QSPR),以根据新化合物的结构特性预测其渗透性。阻碍准确预测发展的主要挑战之一是同一化合物存在多个值,这主要是由所采用的实验方案的差异引起的。本综述探讨了实验室内部和实验室之间变异性的程度,以解释其对QSPR建模的影响,系统地和定量地评估最常见的变异性来源。本综述强调了汇编一致数据的重要性,并提出了可用于获取此类数据的策略,有助于建立具有增强预测能力的稳健QSPR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4399/11278619/d41e7ed3cf90/membranes-14-00157-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4399/11278619/2a6db9e657cf/membranes-14-00157-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4399/11278619/857ad77f024b/membranes-14-00157-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4399/11278619/bef1e872f048/membranes-14-00157-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4399/11278619/d41e7ed3cf90/membranes-14-00157-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4399/11278619/2a6db9e657cf/membranes-14-00157-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4399/11278619/857ad77f024b/membranes-14-00157-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4399/11278619/bef1e872f048/membranes-14-00157-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4399/11278619/d41e7ed3cf90/membranes-14-00157-g004.jpg

相似文献

[1]
Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers.

Membranes (Basel). 2024-7-14

[2]
The Permeation of Acamprosate Is Predominantly Caused by Paracellular Diffusion across Caco-2 Cell Monolayers: A Paracellular Modeling Approach.

Mol Pharm. 2019-10-17

[3]
Quantitative analysis of lab-to-lab variability in Caco-2 permeability assays.

Eur J Pharm Biopharm. 2017-5

[4]
A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices.

Eur J Pharm Sci. 2014-10-15

[5]
[Absorption and transport of isoflavonoid compounds from Tongmai formula across human intestinal epithelial (Caco-2) cells in vitro].

Zhongguo Zhong Yao Za Zhi. 2017-8

[6]
Validation of a Caco-2 microfluidic Chip model for predicting intestinal absorption of BCS Class I-IV drugs.

Int J Pharm. 2024-5-10

[7]
A new workflow for the effective curation of membrane permeability data from open ADME information.

J Cheminform. 2024-3-14

[8]
An exploratory study of two Caco-2 cell models for oral absorption: a report on their within-laboratory and between-laboratory variability, and their predictive capacity.

Altern Lab Anim. 2010-10

[9]
Application of method suitability for drug permeability classification.

AAPS J. 2010-9-2

[10]
MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening.

J Pharm Sci. 1999-1

本文引用的文献

[1]
Strategies to identify, engineer, and validate antibodies targeting blood-brain barrier receptor-mediated transcytosis systems for CNS drug delivery.

Expert Opin Drug Deliv. 2023

[2]
High glucose exposure drives intestinal barrier dysfunction by altering its morphological, structural and functional properties.

Biochem Pharmacol. 2023-10

[3]
Permeation of a Homologous Series of NBD-Labeled Fatty Amines through Lipid Bilayers: A Molecular Dynamics Study.

Membranes (Basel). 2023-5-25

[4]
Interlaboratory Variability in the Madin-Darby Canine Kidney Cell Proteome.

Mol Pharm. 2023-7-3

[5]
Quantitative Prediction of Intestinal Absorption of Drugs from In Vitro Study: Utilization of Differentiated Intestinal Epithelial Cells Derived from Intestinal Stem Cells at Crypts.

Drug Metab Dispos. 2023-9

[6]
P-glycoprotein (ABCB1) - weak dipolar interactions provide the key to understanding allocrite recognition, binding, and transport.

Cancer Drug Resist. 2023-1-1

[7]
Ligand's Partition to the Lipid Bilayer Should Be Accounted for When Estimating Their Affinity to Proteins.

Molecules. 2023-3-31

[8]
Understanding Passive Membrane Permeation of Peptides: Physical Models and Sampling Methods Compared.

Int J Mol Sci. 2023-3-6

[9]
Assessment of the Permeability of 3,4-Methylenedioxypyrovalerone (MDPV) across the Caco-2 Monolayer for Estimation of Intestinal Absorption and Enantioselectivity.

Int J Mol Sci. 2023-1-31

[10]
Conformational Sampling Deciphers the Chameleonic Properties of a VHL-Based Degrader.

Pharmaceutics. 2023-1-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索