Suppr超能文献

具有L1和L2范数的稳健主成分分析:一种用于低质量视网膜图像增强的新方法。

Robust PCA with and Norms: A Novel Method for Low-Quality Retinal Image Enhancement.

作者信息

Likassa Habte Tadesse, Chen Ding-Geng, Chen Kewei, Wang Yalin, Zhu Wenhui

机构信息

Department of Biostatistics, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.

Department of Statistics, University of Pretoria, Pretoria 0028, South Africa.

出版信息

J Imaging. 2024 Jun 21;10(7):151. doi: 10.3390/jimaging10070151.

Abstract

Nonmydriatic retinal fundus images often suffer from quality issues and artifacts due to ocular or systemic comorbidities, leading to potential inaccuracies in clinical diagnoses. In recent times, deep learning methods have been widely employed to improve retinal image quality. However, these methods often require large datasets and lack robustness in clinical settings. Conversely, the inherent stability and adaptability of traditional unsupervised learning methods, coupled with their reduced reliance on extensive data, render them more suitable for real-world clinical applications, particularly in the limited data context of high noise levels or a significant presence of artifacts. However, existing unsupervised learning methods encounter challenges such as sensitivity to noise and outliers, reliance on assumptions like cluster shapes, and difficulties with scalability and interpretability, particularly when utilized for retinal image enhancement. To tackle these challenges, we propose a novel robust PCA (RPCA) method with low-rank sparse decomposition that also integrates affine transformations τi, weighted nuclear norm, and the L2,1 norms, aiming to overcome existing method limitations and to achieve image quality improvement unseen by these methods. We employ the weighted nuclear norm (Lw,∗) to assign weights to singular values to each retinal images and utilize the L2,1 norm to eliminate correlated samples and outliers in the retinal images. Moreover, τi is employed to enhance retinal image alignment, making the new method more robust to variations, outliers, noise, and image blurring. The Alternating Direction Method of Multipliers (ADMM) method is used to optimally determine parameters, including τi, by solving an optimization problem. Each parameter is addressed separately, harnessing the benefits of ADMM. Our method introduces a novel parameter update approach and significantly improves retinal image quality, detecting cataracts, and diabetic retinopathy. Simulation results confirm our method's superiority over existing state-of-the-art methods across various datasets.

摘要

非散瞳视网膜眼底图像常常因眼部或全身合并症而存在质量问题和伪影,导致临床诊断中可能出现不准确的情况。近年来,深度学习方法被广泛用于提高视网膜图像质量。然而,这些方法通常需要大量数据集,并且在临床环境中缺乏鲁棒性。相反,传统无监督学习方法固有的稳定性和适应性,再加上它们对大量数据的依赖减少,使其更适合实际临床应用,特别是在高噪声水平或大量伪影存在的有限数据环境中。然而,现有的无监督学习方法面临诸如对噪声和离群值敏感、依赖聚类形状等假设以及可扩展性和可解释性方面的困难等挑战,尤其是在用于视网膜图像增强时。为了应对这些挑战,我们提出了一种具有低秩稀疏分解的新型鲁棒主成分分析(RPCA)方法,该方法还集成了仿射变换τi、加权核范数和L2,1范数,旨在克服现有方法的局限性,并实现这些方法无法实现的图像质量提升。我们使用加权核范数(Lw,∗)为每个视网膜图像的奇异值分配权重,并利用L2,1范数消除视网膜图像中的相关样本和离群值。此外,τi用于增强视网膜图像对齐,使新方法对变化、离群值、噪声和图像模糊更具鲁棒性。交替方向乘子法(ADMM)方法用于通过解决优化问题来最优地确定包括τi在内的参数。每个参数都单独处理,利用ADMM的优势。我们的方法引入了一种新颖的参数更新方法,并显著提高了视网膜图像质量、检测白内障和糖尿病视网膜病变的能力。仿真结果证实了我们的方法在各种数据集上优于现有的最先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/11277667/e6bcca8cdec6/jimaging-10-00151-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验