Suppr超能文献

少样本条件学习:医学检测设备的自动可靠设备分类

Few-Shot Conditional Learning: Automatic and Reliable Device Classification for Medical Test Equipment.

作者信息

Pachetti Eva, Del Corso Giulio, Bardelli Serena, Colantonio Sara

机构信息

"Alessandro Faedo" Institute of Information Science and Technologies (ISTI), National Research Council of Italy (CNR), 56127 Pisa, Italy.

Department of Information Engineering (DII), University of Pisa, 56122 Pisa, Italy.

出版信息

J Imaging. 2024 Jul 13;10(7):167. doi: 10.3390/jimaging10070167.

Abstract

The limited availability of specialized image databases (particularly in hospitals, where tools vary between providers) makes it difficult to train deep learning models. This paper presents a few-shot learning methodology that uses a pre-trained ResNet integrated with an encoder as a backbone to encode conditional shape information for the classification of neonatal resuscitation equipment from less than 100 natural images. The model is also strengthened by incorporating a reliability score, which enriches the prediction with an estimation of classification reliability. The model, whose performance is cross-validated, reached a median accuracy performance of over 99% (and a lower limit of 73.4% for the least accurate model/fold) using only 87 meta-training images. During the test phase on complex natural images, performance was slightly degraded due to a sub-optimal segmentation strategy (FastSAM) required to maintain the real-time inference phase (median accuracy 87.25%). This methodology proves to be excellent for applying complex classification models to contexts (such as neonatal resuscitation) that are not available in public databases. Improvements to the automatic segmentation strategy prior to the extraction of conditional information will allow a natural application in simulation and hospital settings.

摘要

专业图像数据库的可用性有限(尤其是在医院,不同供应商的工具各不相同),这使得深度学习模型的训练变得困难。本文提出了一种少样本学习方法,该方法使用预训练的ResNet与编码器集成作为主干,从不到100张自然图像中编码条件形状信息,用于新生儿复苏设备的分类。通过纳入可靠性分数来强化模型,该分数通过分类可靠性估计来丰富预测。该模型的性能经过交叉验证,仅使用87张元训练图像,中位数准确率就超过了99%(最不准确的模型/折的下限为73.4%)。在复杂自然图像的测试阶段,由于维持实时推理阶段所需的次优分割策略(FastSAM),性能略有下降(中位数准确率87.25%)。这种方法被证明非常适合将复杂的分类模型应用于公共数据库中没有的场景(如新生儿复苏)。在提取条件信息之前改进自动分割策略,将使其能够自然地应用于模拟和医院环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6f4/11278471/a6caa60eac32/jimaging-10-00167-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验