MAX IV Laboratory, Lund University, 22100 Lund, Sweden.
Departament d'Enginyeria Electronica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain.
ACS Sens. 2024 Aug 23;9(8):4079-4088. doi: 10.1021/acssensors.4c01033. Epub 2024 Jul 26.
Ambient pressure X-ray photoelectron spectroscopy (APXPS) is combined with simultaneous electrical measurements and supported by density functional theory calculations to investigate the sensing mechanism of tungsten disulfide (WS)-based gas sensors in an dynamic experiment. This approach allows for the direct correlation between changes in the surface potential and the resistivity of the WS sensing active layer under realistic operating conditions. Focusing on the toxic gases NO and NH, we concurrently demonstrate the distinct chemical interactions between oxidizing or reducing agents and the WS active layer and their effect on the sensor response. The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations. This methodology applied to NH concentrations of 100, 230, and 760 and 14 ppm of NO establishes a benchmark for future APXPS studies on sensing devices, providing fast acquisition times and a 1:1 correlation between electrical response and spectroscopy data in conditions. Our findings contribute to a deeper understanding of the sensing mechanism in 2D transition metal dichalcogenides, paving the way for optimizing chemiresistor sensors for various industrial applications and wireless platforms with low energy consumption.
常压 X 射线光电子能谱 (APXPS) 与同步电测量相结合,并辅以密度泛函理论计算,用于在动态实验中研究基于二硫化钨 (WS) 的气体传感器的传感机制。这种方法允许在实际操作条件下直接关联表面电位变化和 WS 传感活性层的电阻率。研究聚焦于有毒气体 NO 和 NH,同时演示了氧化剂或还原剂与 WS 活性层之间的独特化学相互作用,以及它们对传感器响应的影响。实验设置模拟了化学电阻器的标准电测量,将样品暴露在干燥空气中,并以不同浓度引入目标气体分析物。该方法应用于 NH3 浓度为 100、230 和 760 以及 14 ppm 的 NO,为未来的传感设备 APXPS 研究提供了基准,在实际条件下实现了快速采集时间和电响应与光谱数据之间的 1:1 相关性。我们的研究结果有助于深入了解二维过渡金属二卤化物中的传感机制,为各种工业应用和低能耗无线平台优化化学电阻器传感器铺平了道路。