Suppr超能文献

基于钆铁基纳米腔形超表面的空间电磁波场激发与共振积累的红外光波内存驻留操纵与吸收

Infrared Lightwave Memory-Resident Manipulation and Absorption Based on Spatial Electromagnetic Wavefield Excitation and Resonant Accumulation by GdFe-Based Nanocavity-Shaped Metasurfaces.

作者信息

Chen Cheng, Zhang Chuang, Liu Taige, Wang Zhe, Shi Jiashuo, Zhang Xinyu

机构信息

National Key Laboratory of Science and Technology on Multispectral Information Processing, Huazhong University of Science and Technology, Wuhan 430074, China.

School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Nanomaterials (Basel). 2024 Jul 20;14(14):1230. doi: 10.3390/nano14141230.

Abstract

An arrayed nanocavity-shaped architecture consisting of the key GdFe film and SiO dielectric layer is constructed, leading to an efficient infrared (IR) absorption metasurface. By carefully designing and optimizing the film system configuration and the surface layout with needed geometry, a desirable IR radiation absorption according to the spatial magnetic plasmon modes is realized experimentally. The simulations and measurements demonstrate that GdFe-based nanocavity-shaped metasurfaces can be used to achieve an average IR absorption of ~81% in a wide wavelength range of 3-14 μm. A type of the patterned GdFe-based nanocavity-shaped metasurface is further proposed for exciting relatively strong spatial electromagnetic wavefields confined by a patterned nanocavity array based on the joint action of the surface oscillated net charges over the charged metallic films and the surface conductive currents including equivalent eddy currents surrounding the layered GdFe and SiO materials. Intensive IR absorption can be attributed to a spatial electromagnetic wavefield excitation and resonant accumulation or memory residence according to the GdFe-based nanocavity-shaped array formed. Our research provides a potential clue for efficiently responding and manipulating and storing incident IR radiation mainly based on the excitation and resonant accumulation of spatial magnetic plasmons.

摘要

构建了一种由关键的钆铁(GdFe)薄膜和二氧化硅(SiO)介电层组成的阵列式纳米腔形结构,从而形成了一种高效的红外(IR)吸收超表面。通过精心设计和优化薄膜系统配置以及具有所需几何形状的表面布局,根据空间磁等离子体模式实现了理想的红外辐射吸收。模拟和测量结果表明,基于钆铁的纳米腔形超表面可用于在3 - 14μm的宽波长范围内实现约81%的平均红外吸收。进一步提出了一种基于钆铁的图案化纳米腔形超表面,用于基于带电金属膜上表面振荡净电荷与包括围绕分层钆铁和二氧化硅材料的等效涡电流在内的表面传导电流的联合作用,激发由图案化纳米腔阵列限制的相对较强的空间电磁波场。强烈的红外吸收可归因于根据形成的基于钆铁的纳米腔形阵列的空间电磁波场激发以及共振积累或记忆驻留。我们的研究为主要基于空间磁等离子体的激发和共振积累来有效响应、操纵和存储入射红外辐射提供了一个潜在线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50e4/11280035/5d7a5cb579fb/nanomaterials-14-01230-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验