Tsai I-Hua, Diau Eric Wei-Guang
Department of Applied Chemistry, Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Rd., Hsinchu 300093, Taiwan.
Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Rd., Hsinchu 300093, Taiwan.
Nanomaterials (Basel). 2024 Jul 20;14(14):1231. doi: 10.3390/nano14141231.
Zinc indihuhium sulfide (ZIS), among various semiconductor materials, shows considerable potential due to its simplicity, low cost, and environmental compatibility. However, the influence of precursor anions on ZIS properties remains unclear. In this study, we synthesized ZIS via a hydrothermal method using four different anionic precursors (ZnCl/InCl, Zn(NO)/In(NO), Zn(CHCO)/In(CHCO), and Zn(CHCO)/In(SO)), resulting in distinct morphologies and crystal structures. Our findings reveal that ZIS produced from Zn(CHCO)/In(SO) (ZIS-AceSO) exhibited the highest photocatalytic CO reduction efficiency, achieving a CO production yield of 134 μmol gh. This enhanced performance is attributed to the formation of more zinc and indium vacancy defects, as confirmed by EDS analysis. Additionally, we determined the energy levels of the valence band maximum (VBM) and the conduction band minimum (CBM) via UPS and absorption spectra, providing insights into the band alignment essential for photocatalytic processes. These findings not only deepen our understanding of the anionic precursor's impact on ZIS properties but also offer new avenues for optimizing photocatalytic CO reduction, marking a significant advancement over previous studies.
在各种半导体材料中,硫化锌铟(ZIS)因其制备简单、成本低且与环境兼容而显示出巨大潜力。然而,前驱体阴离子对ZIS性能的影响仍不明确。在本研究中,我们采用水热法,使用四种不同的阴离子前驱体(ZnCl/InCl、Zn(NO)/In(NO)、Zn(CHCO)/In(CHCO)和Zn(CHCO)/In(SO))合成了ZIS,得到了不同的形貌和晶体结构。我们的研究结果表明,由Zn(CHCO)/In(SO)制备的ZIS(ZIS-AceSO)表现出最高的光催化CO还原效率,CO产率达到134 μmol g h。EDS分析证实,这种增强的性能归因于形成了更多的锌和铟空位缺陷。此外,我们通过紫外光电子能谱(UPS)和吸收光谱确定了价带最大值(VBM)和导带最小值(CBM)的能级,为光催化过程中至关重要的能带排列提供了见解。这些发现不仅加深了我们对阴离子前驱体对ZIS性能影响的理解,还为优化光催化CO还原提供了新途径,标志着相对于以往研究有了重大进展。