Suppr超能文献

接受解释深度的错觉:一种使用迭代提示将大语言模型整合到医学教育中的战略框架。

Embracing the illusion of explanatory depth: A strategic framework for using iterative prompting for integrating large language models in healthcare education.

作者信息

Mehta Seysha, Mehta Neil

机构信息

Cleveland Clinic Lerner College of Medicine of Case Western Reserve University.

出版信息

Med Teach. 2025 Feb;47(2):208-211. doi: 10.1080/0142159X.2024.2382863. Epub 2024 Jul 26.

Abstract

Healthcare educators are exploring ways to integrate Large Language Models (LLMs) into the curriculum. At the same time, they are concerned about the negative impact on students' cognitive development. There is concern that the students will not learn to think and problem-solve by themselves and instead become dependent on LLMs to find answers. In addition, the students could start accepting the LLM generated responses at face value. The Illusion of Explanatory Depth (IoED) is a cognitive bias where humans believe they understand complex phenomena in more depth than they do. This illusion is caused when people rely on external sources of information rather than deeper levels of internalized knowledge. This illusion can be exposed by asking follow-up in depth questions. Using the same approach, specifically iterative prompting, can help students interact with LLM's while learning actively, gaining deeper levels of knowledge, and exposing the LLM shortcomings. The article proposes that educators encourage use of LLMs to complete assignments using a template, that promotes students' reflections on their interactions with LLMs, using iterative prompting. This process based on IoED, and iterative prompting will help educators integrate LLMs in the curriculum while mitigating the risk of students becoming dependent on these tools. Students will practice active learning and experience firsthand the inaccuracies and inconsistencies in LLM responses.

摘要

医疗保健教育工作者正在探索将大语言模型(LLMs)融入课程的方法。与此同时,他们担心这会对学生的认知发展产生负面影响。有人担心学生将不会学会自己思考和解决问题,而是变得依赖大语言模型来寻找答案。此外,学生可能会开始直接接受大语言模型生成的回答。解释性深度错觉(IoED)是一种认知偏差,即人类认为自己比实际情况更深入地理解复杂现象。当人们依赖外部信息来源而不是更深层次的内化知识时,就会产生这种错觉。通过提出后续的深入问题可以揭示这种错觉。使用相同的方法,特别是迭代提示,可以帮助学生在积极学习的同时与大语言模型互动,获得更深入的知识,并揭示大语言模型的缺点。文章建议教育工作者鼓励学生使用模板来完成作业,该模板通过迭代提示促进学生对他们与大语言模型互动的反思。这个基于解释性深度错觉和迭代提示的过程将帮助教育工作者将大语言模型融入课程,同时降低学生依赖这些工具的风险。学生将实践主动学习,并亲身体验大语言模型回答中的不准确和不一致之处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验