文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能的自动游离皮瓣监测系统的开发。

Development of an Automated Free Flap Monitoring System Based on Artificial Intelligence.

机构信息

Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.

Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea.

出版信息

JAMA Netw Open. 2024 Jul 1;7(7):e2424299. doi: 10.1001/jamanetworkopen.2024.24299.


DOI:10.1001/jamanetworkopen.2024.24299
PMID:39058486
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11282448/
Abstract

IMPORTANCE: Meticulous postoperative flap monitoring is essential for preventing flap failure and achieving optimal results in free flap operations, for which physical examination has remained the criterion standard. Despite the high reliability of physical examination, the requirement of excessive use of clinician time has been considered a main drawback. OBJECTIVE: To develop an automated free flap monitoring system using artificial intelligence (AI), minimizing human involvement while maintaining efficiency. DESIGN, SETTING, AND PARTICIPANTS: In this prognostic study, the designed system involves a smartphone camera installed in a location with optimal flap visibility to capture photographs at regular intervals. The automated program identifies the flap area, checks for notable abnormalities in its appearance, and notifies medical staff if abnormalities are detected. Implementation requires 2 AI-based models: a segmentation model for automatic flap recognition in photographs and a grading model for evaluating the perfusion status of the identified flap. To develop this system, flap photographs captured for monitoring were collected from patients who underwent free flap-based reconstruction from March 1, 2020, to August 31, 2023. After the 2 models were developed, they were integrated to construct the system, which was applied in a clinical setting in November 2023. EXPOSURE: Conducting the developed automated AI-based flap monitoring system. MAIN OUTCOMES AND MEASURES: Accuracy of the developed models and feasibility of clinical application of the system. RESULTS: Photographs were obtained from 305 patients (median age, 62 years [range, 8-86 years]; 178 [58.4%] were male). Based on 2068 photographs, the FS-net program (a customized model) was developed for flap segmentation, demonstrating a mean (SD) Dice similarity coefficient of 0.970 (0.001) with 5-fold cross-validation. For the flap grading system, 11 112 photographs from the 305 patients were used, encompassing 10 115 photographs with normal features and 997 with abnormal features. Tested on 5506 photographs, the DenseNet121 model demonstrated the highest performance with an area under the receiver operating characteristic curve of 0.960 (95% CI, 0.951-0.969). The sensitivity for detecting venous insufficiency was 97.5% and for arterial insufficiency was 92.8%. When applied to 10 patients, the system successfully conducted 143 automated monitoring sessions without significant issues. CONCLUSIONS AND RELEVANCE: The findings of this study suggest that a novel automated system may enable efficient flap monitoring with minimal use of clinician time. It may be anticipated to serve as an effective surveillance tool for postoperative free flap monitoring. Further studies are required to verify its reliability.

摘要

重要性:在游离皮瓣手术中,细致的术后皮瓣监测对于防止皮瓣失败和获得最佳效果至关重要,而体格检查一直是该手术的标准。尽管体格检查具有很高的可靠性,但需要大量使用临床医生的时间被认为是一个主要的缺点。

目的:开发一种使用人工智能(AI)的自动化游离皮瓣监测系统,在保持效率的同时最大限度地减少人工干预。

设计、设置和参与者:在这项预后研究中,所设计的系统涉及一个智能手机摄像头,该摄像头安装在皮瓣可见度最佳的位置,以便定期拍摄照片。自动化程序识别皮瓣区域,检查其外观是否有明显异常,如果发现异常,通知医务人员。实施该系统需要 2 个基于 AI 的模型:一个用于自动识别照片中皮瓣的分割模型,一个用于评估识别的皮瓣灌注状态的分级模型。为了开发这个系统,从 2020 年 3 月 1 日至 2023 年 8 月 31 日期间接受游离皮瓣重建的患者中收集了用于监测的皮瓣照片。在开发了这 2 个模型后,将它们集成到一个系统中,并于 2023 年 11 月在临床环境中应用该系统。

暴露情况:使用开发的自动化基于 AI 的皮瓣监测系统。

主要结果和措施:开发的模型的准确性和系统临床应用的可行性。

结果:从 305 名患者(中位年龄 62 岁[范围 8-86 岁];178 名[58.4%]为男性)中获得了照片。基于 2068 张照片,开发了一个名为 FS-net 的程序(一个定制模型)用于皮瓣分割,其 5 重交叉验证的平均(SD)Dice 相似系数为 0.970(0.001)。对于皮瓣分级系统,使用了 305 名患者的 11112 张照片,其中包括 10115 张正常特征的照片和 997 张异常特征的照片。在 5506 张照片上进行测试,DenseNet121 模型表现出最高的性能,受试者工作特征曲线下面积为 0.960(95%CI,0.951-0.969)。检测静脉功能不全的敏感性为 97.5%,检测动脉功能不全的敏感性为 92.8%。当应用于 10 名患者时,该系统成功地进行了 143 次自动监测,没有出现重大问题。

结论和相关性:这项研究的结果表明,一种新的自动化系统可以实现高效的皮瓣监测,同时最大限度地减少临床医生的时间投入。它可能成为术后游离皮瓣监测的有效监测工具。需要进一步的研究来验证其可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968c/11282448/1840cab47750/jamanetwopen-e2424299-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968c/11282448/d0b876b10c61/jamanetwopen-e2424299-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968c/11282448/a0d1bc39d96f/jamanetwopen-e2424299-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968c/11282448/062f8ba90f96/jamanetwopen-e2424299-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968c/11282448/1840cab47750/jamanetwopen-e2424299-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968c/11282448/d0b876b10c61/jamanetwopen-e2424299-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968c/11282448/a0d1bc39d96f/jamanetwopen-e2424299-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968c/11282448/062f8ba90f96/jamanetwopen-e2424299-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968c/11282448/1840cab47750/jamanetwopen-e2424299-g004.jpg

相似文献

[1]
Development of an Automated Free Flap Monitoring System Based on Artificial Intelligence.

JAMA Netw Open. 2024-7-1

[2]
Suprastomal cutaneous monitoring paddle for free flap reconstruction of laryngopharyngectomy defects.

JAMA Facial Plast Surg. 2013

[3]
Free Flap Reconstruction Monitoring Techniques and Frequency in the Era of Restricted Resident Work Hours.

JAMA Otolaryngol Head Neck Surg. 2017-8-1

[4]
Development of a Method for Clinical Evaluation of Artificial Intelligence-Based Digital Wound Assessment Tools.

JAMA Netw Open. 2021-5-3

[5]
Reliability of Postoperative Free Flap Monitoring with a Novel Prediction Model Based on Supervised Machine Learning.

Plast Reconstr Surg. 2023-11-1

[6]
Outcomes and reliability of the flow coupler in postoperative monitoring of head and neck free flaps.

Laryngoscope. 2018-4

[7]
Transcutaneous oxygen measurement using ratiometric fluorescence imaging as a valid method for monitoring free flap transplants.

Clin Hemorheol Microcirc. 2019

[8]
Quantization of extraoral free flap monitoring for venous congestion with deep learning integrated iOS applications on smartphones: a diagnostic study.

Int J Surg. 2023-6-1

[9]
Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine.

Spine J. 2022-4

[10]
Revolutionizing Postoperative Free Flap Monitoring-The Promise of AI to Improve Health Outcomes.

JAMA Netw Open. 2024-7-1

引用本文的文献

[1]
Auto-Segmentation via deep-learning approaches for the assessment of flap volume after reconstructive surgery or radiotherapy in head and neck cancer.

Sci Rep. 2025-7-1

[2]
The Transformative Role of Artificial Intelligence in Plastic and Reconstructive Surgery: Challenges and Opportunities.

J Clin Med. 2025-4-15

[3]
Artificial Intelligence in Breast Reconstruction: A Narrative Review.

Medicina (Kaunas). 2025-2-28

[4]
The Current State of the Art in Autologous Breast Reconstruction: A Review and Modern/Future Approaches.

J Clin Med. 2025-2-25

本文引用的文献

[1]
Harnessing the Power of Artificial Intelligence: Revolutionizing Free Flaps Monitoring in Head and Neck Tumor Treatment.

Crit Rev Oncog. 2023

[2]
Quantization of extraoral free flap monitoring for venous congestion with deep learning integrated iOS applications on smartphones: a diagnostic study.

Int J Surg. 2023-6-1

[3]
Postoperative free flap monitoring in reconstructive surgery-man or machine?

Front Surg. 2023-2-22

[4]
Reliability of Postoperative Free Flap Monitoring with a Novel Prediction Model Based on Supervised Machine Learning.

Plast Reconstr Surg. 2023-11-1

[5]
Quantifying the Limitations of Clinical and Technology-based Flap Monitoring Strategies using a Systematic Thematic Analysis.

Plast Reconstr Surg Glob Open. 2021-7-12

[6]
Free Flap Monitoring, Salvage, and Failure Timing: A Systematic Review.

J Reconstr Microsurg. 2021-3

[7]
Postoperative Free-Flap Monitoring Techniques.

Semin Plast Surg. 2019-2

[8]
Free Flap Reconstruction Monitoring Techniques and Frequency in the Era of Restricted Resident Work Hours.

JAMA Otolaryngol Head Neck Surg. 2017-8-1

[9]
An analysis of free flap failure using the ACS NSQIP database. Does flap site and flap type matter?

Microsurgery. 2017-9

[10]
Cost-effectiveness of monitoring free flaps.

Br J Oral Maxillofac Surg. 2016-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索