Suppr超能文献

基于深度学习的呼吸肌分割作为一种潜在的呼吸功能评估影像学生物标志物。

Deep learning-based respiratory muscle segmentation as a potential imaging biomarker for respiratory function assessment.

机构信息

Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine, Seoul, Republic of Korea.

Department of Radiology, Korea University Guro Hospital, Seoul, Republic of Korea.

出版信息

PLoS One. 2024 Jul 26;19(7):e0306789. doi: 10.1371/journal.pone.0306789. eCollection 2024.

Abstract

Respiratory diseases significantly affect respiratory function, making them a considerable contributor to global mortality. The respiratory muscles play an important role in disease prognosis; as such, quantitative analysis of the respiratory muscles is crucial to assess the status of the respiratory system and the quality of life in patients. In this study, we aimed to develop an automated approach for the segmentation and classification of three types of respiratory muscles from computed tomography (CT) images using artificial intelligence. With a dataset of approximately 600,000 thoracic CT images from 3,200 individuals, we trained the model using the Attention U-Net architecture, optimized for detailed and focused segmentation. Subsequently, we calculated the volumes and densities from the muscle masks segmented by our model and performed correlation analysis with pulmonary function test (PFT) parameters. The segmentation models for muscle tissue and respiratory muscles obtained dice scores of 0.9823 and 0.9688, respectively. The classification model, achieving a generalized dice score of 0.9900, also demonstrated high accuracy in classifying thoracic region muscle types, as evidenced by its F1 scores: 0.9793 for the pectoralis muscle, 0.9975 for the erector spinae muscle, and 0.9839 for the intercostal muscle. In the correlation analysis, the volume of the respiratory muscles showed a strong correlation with PFT parameters, suggesting that respiratory muscle volume may serve as a potential novel biomarker for respiratory function. Although muscle density showed a weaker correlation with the PFT parameters, it has a potential significance in medical research.

摘要

呼吸系统疾病显著影响呼吸功能,是导致全球死亡率的重要因素。呼吸肌在疾病预后中起着重要作用;因此,对呼吸肌进行定量分析对于评估呼吸系统状况和患者生活质量至关重要。在这项研究中,我们旨在开发一种使用人工智能从计算机断层扫描(CT)图像自动分割和分类三种类型呼吸肌的方法。我们使用了来自 3200 个人的大约 60 万张胸部 CT 图像数据集,使用专门用于详细和重点分割的 Attention U-Net 架构对模型进行了训练。然后,我们从模型分割的肌肉掩模中计算体积和密度,并与肺功能测试(PFT)参数进行相关性分析。肌肉组织和呼吸肌的分割模型分别获得了 0.9823 和 0.9688 的 Dice 得分。分类模型的广义 Dice 得分为 0.9900,也证明了其在分类胸区肌肉类型方面具有很高的准确性,其 F1 分数分别为:胸大肌为 0.9793,竖脊肌为 0.9975,肋间肌为 0.9839。在相关性分析中,呼吸肌的体积与 PFT 参数显示出很强的相关性,这表明呼吸肌体积可能成为呼吸功能的一个潜在新型生物标志物。尽管肌肉密度与 PFT 参数的相关性较弱,但它在医学研究中具有潜在意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5602/11280157/e479c1c4ab23/pone.0306789.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验