文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的计算机断层扫描图像标准化以提高基于深度学习的肝脏分割的泛化能力。

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation.

机构信息

Department of Radiology, Seoul National University Hospital, Seoul, Korea.

Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Korean J Radiol. 2023 Apr;24(4):294-304. doi: 10.3348/kjr.2022.0588. Epub 2023 Mar 7.


DOI:10.3348/kjr.2022.0588
PMID:36907592
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10067697/
Abstract

OBJECTIVE: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. MATERIALS AND METHODS: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired -test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. RESULTS: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). CONCLUSION: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.

摘要

目的:我们旨在研究基于深度学习的 CT 图像转换的图像标准化是否会提高基于深度学习的自动肝脏分割在各种重建方法中的性能。

材料与方法:我们收集了使用各种重建方法(包括滤波反投影、迭代重建、最佳对比以及 40、60 和 80keV 的单能量图像)获得的腹部增强双能 CT。开发了一种基于深度学习的图像转换算法,以使用 142 次 CT 检查(128 次用于训练,14 次用于调整)对 CT 图像进行标准化。来自 42 名患者的另外 43 次 CT 检查(平均年龄 10.1 岁)被用作测试数据。使用商业软件程序(MEDIP PRO v2.0.0.0,MEDICALIP Co. Ltd.)基于 2D U-NET 创建肝脏分割掩模和肝体积。原始 80keV 图像用作地面实况。我们使用配对 t 检验比较图像标准化前后肝脏体积相对于地面真实体积的 Dice 相似系数(DSC)和差异比的分割性能。一致性相关系数(CCC)用于评估分割的肝体积与地面真实体积之间的一致性。

结果:原始 CT 图像显示出可变且较差的分割性能。标准化图像的肝脏分割 DSC 明显高于原始图像(DSC[原始,5.40%-91.27%]与[标准化,93.16%-96.74%],均 < 0.001)。肝脏体积的差异比也在图像转换后显著降低(原始,9.84%-91.37%与标准化,1.99%-4.41%)。在所有协议中,图像转换后 CCC 均提高(原始,-0.006-0.964 与标准化,0.990-0.998)。

结论:基于深度学习的 CT 图像标准化可以提高使用各种方法重建的 CT 图像的自动肝脏分割性能。基于深度学习的 CT 图像转换有可能提高分割网络的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/f61851213528/kjr-24-294-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/77d2716c15bf/kjr-24-294-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/6a003242a004/kjr-24-294-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/a586b54b3859/kjr-24-294-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/005ddc690c00/kjr-24-294-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/f61851213528/kjr-24-294-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/77d2716c15bf/kjr-24-294-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/6a003242a004/kjr-24-294-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/a586b54b3859/kjr-24-294-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/005ddc690c00/kjr-24-294-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/10067697/f61851213528/kjr-24-294-g005.jpg

相似文献

[1]
Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation.

Korean J Radiol. 2023-4

[2]
Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.

Med Phys. 2021-5

[3]
Improving radiomics reproducibility using deep learning-based image conversion of CT reconstruction algorithms in hepatocellular carcinoma patients.

Eur Radiol. 2024-3

[4]
Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation.

Eur Radiol. 2022-7

[5]
Automated segmentation of liver and hepatic vessels on portal venous phase computed tomography images using a deep learning algorithm.

J Appl Clin Med Phys. 2024-8

[6]
Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images.

Korean J Radiol. 2020-8

[7]
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.

Med Phys. 2018-12-17

[8]
Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images.

Comput Biol Med. 2024-5

[9]
Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors.

Diagn Interv Radiol. 2020-1

[10]
Abdomen tissues segmentation from computed tomography images using deep learning and level set methods.

Math Biosci Eng. 2022-9-23

引用本文的文献

[1]
Enhancing Radiomics Reproducibility: Deep Learning-Based Harmonization of Abdominal Computed Tomography (CT) Images.

Bioengineering (Basel). 2024-11-30

[2]
Style harmonization of panoramic radiography using deep learning.

Oral Radiol. 2025-1

[3]
Conceptual review of outcome metrics and measures used in clinical evaluation of artificial intelligence in radiology.

Radiol Med. 2024-11

[4]
Reporting Quality of Research Studies on AI Applications in Medical Images According to the CLAIM Guidelines in a Radiology Journal With a Strong Prominence in Asia.

Korean J Radiol. 2023-12

本文引用的文献

[1]
External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review.

Radiol Artif Intell. 2022-5-4

[2]
Interinstitutional Portability of a Deep Learning Brain MRI Lesion Segmentation Algorithm.

Radiol Artif Intell. 2021-11-10

[3]
Toward Generalizability in the Deployment of Artificial Intelligence in Radiology: Role of Computation Stress Testing to Overcome Underspecification.

Radiol Artif Intell. 2021-10-27

[4]
Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios.

Radiol Artif Intell. 2021-10-6

[5]
Deep Learning-Based Image Conversion Improves the Reproducibility of Computed Tomography Radiomics Features: A Phantom Study.

Invest Radiol. 2022-5-1

[6]
Deep Learning: An Update for Radiologists.

Radiographics. 2021

[7]
Text Data Augmentation for Deep Learning.

J Big Data. 2021

[8]
Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study.

Eur Radiol. 2021-11

[9]
Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus.

J Neurosurg Pediatr. 2021-2-1

[10]
Autonomous Detection and Classification of PI-RADS Lesions in an MRI Screening Population Incorporating Multicenter-Labeled Deep Learning and Biparametric Imaging: Proof of Concept.

Diagnostics (Basel). 2020-11-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索