Suppr超能文献

nf-core/airrflow:采用 Immcantation 框架的适应性免疫受体库分析工作流程。

nf-core/airrflow: An adaptive immune receptor repertoire analysis workflow employing the Immcantation framework.

机构信息

Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America.

Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany.

出版信息

PLoS Comput Biol. 2024 Jul 26;20(7):e1012265. doi: 10.1371/journal.pcbi.1012265. eCollection 2024 Jul.

Abstract

Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is a valuable experimental tool to study the immune state in health and following immune challenges such as infectious diseases, (auto)immune diseases, and cancer. Several tools have been developed to reconstruct B cell and T cell receptor sequences from AIRR-seq data and infer B and T cell clonal relationships. However, currently available tools offer limited parallelization across samples, scalability or portability to high-performance computing infrastructures. To address this need, we developed nf-core/airrflow, an end-to-end bulk and single-cell AIRR-seq processing workflow which integrates the Immcantation Framework following BCR and TCR sequencing data analysis best practices. The Immcantation Framework is a comprehensive toolset, which allows the processing of bulk and single-cell AIRR-seq data from raw read processing to clonal inference. nf-core/airrflow is written in Nextflow and is part of the nf-core project, which collects community contributed and curated Nextflow workflows for a wide variety of analysis tasks. We assessed the performance of nf-core/airrflow on simulated sequencing data with sequencing errors and show example results with real datasets. To demonstrate the applicability of nf-core/airrflow to the high-throughput processing of large AIRR-seq datasets, we validated and extended previously reported findings of convergent antibody responses to SARS-CoV-2 by analyzing 97 COVID-19 infected individuals and 99 healthy controls, including a mixture of bulk and single-cell sequencing datasets. Using this dataset, we extended the convergence findings to 20 additional subjects, highlighting the applicability of nf-core/airrflow to validate findings in small in-house cohorts with reanalysis of large publicly available AIRR datasets.

摘要

适应性免疫受体库测序(AIRR-seq)是一种研究健康状态以及在感染性疾病、(自身)免疫性疾病和癌症等免疫挑战下的免疫状态的有价值的实验工具。已经开发了几种工具来从 AIRR-seq 数据中重建 B 细胞和 T 细胞受体序列,并推断 B 和 T 细胞克隆关系。然而,目前可用的工具在样本之间提供的并行化程度、可扩展性或可移植性到高性能计算基础设施方面受到限制。为了解决这个需求,我们开发了 nf-core/airrflow,这是一个端到端的批量和单细胞 AIRR-seq 处理工作流程,它整合了 Immcantation 框架,遵循 BCR 和 TCR 测序数据分析的最佳实践。Immcantation 框架是一个全面的工具集,允许从原始读取处理到克隆推断处理批量和单细胞 AIRR-seq 数据。nf-core/airrflow 是用 Nextflow 编写的,是 nf-core 项目的一部分,该项目收集了社区贡献和策划的用于各种分析任务的 Nextflow 工作流程。我们评估了 nf-core/airrflow 在具有测序错误的模拟测序数据上的性能,并展示了真实数据集的示例结果。为了展示 nf-core/airrflow 对高通量处理大型 AIRR-seq 数据集的适用性,我们通过分析 97 名 COVID-19 感染个体和 99 名健康对照者,包括批量和单细胞测序数据集的混合物,验证和扩展了先前关于 SARS-CoV-2 收敛性抗体反应的报告结果。使用这个数据集,我们将收敛性发现扩展到了 20 个额外的对象,突出了 nf-core/airrflow 在重新分析大型公共可用的 AIRR 数据集的同时,在小型内部队列中验证发现的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e447/11305553/d906039a119c/pcbi.1012265.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验