Suppr超能文献

用于适应性免疫受体库机器学习分析的immuneML生态系统。

The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires.

作者信息

Pavlović Milena, Scheffer Lonneke, Motwani Keshav, Kanduri Chakravarthi, Kompova Radmila, Vazov Nikolay, Waagan Knut, Bernal Fabian L M, Costa Alexandre Almeida, Corrie Brian, Akbar Rahmad, Al Hajj Ghadi S, Balaban Gabriel, Brusko Todd M, Chernigovskaya Maria, Christley Scott, Cowell Lindsay G, Frank Robert, Grytten Ivar, Gundersen Sveinung, Haff Ingrid Hobæk, Hovig Eivind, Hsieh Ping-Han, Klambauer Günter, Kuijjer Marieke L, Lund-Andersen Christin, Martini Antonio, Minotto Thomas, Pensar Johan, Rand Knut, Riccardi Enrico, Robert Philippe A, Rocha Artur, Slabodkin Andrei, Snapkov Igor, Sollid Ludvig M, Titov Dmytro, Weber Cédric R, Widrich Michael, Yaari Gur, Greiff Victor, Sandve Geir Kjetil

机构信息

Department of Informatics, University of Oslo, Norway.

Centre for Bioinformatics, University of Oslo, Norway.

出版信息

Nat Mach Intell. 2021 Nov;3(11):936-944. doi: 10.1038/s42256-021-00413-z. Epub 2021 Nov 16.

Abstract

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

摘要

适应性免疫受体组库(AIRR)是生物医学研究的关键靶点,因为它们记录了过去和正在进行的适应性免疫反应。机器学习(ML)识别复杂判别序列模式的能力使其成为基于AIRR的诊断和治疗发现的理想方法。迄今为止,由于缺乏可重复性、透明度和互操作性,AIRR ML的广泛应用受到了抑制。immuneML(immuneml.uio.no)通过在基于完全指定和可共享工作流程的可扩展开源软件生态系统中实施AIRR ML过程的每个步骤来解决这些问题。为了促进用户广泛采用,immuneML可作为命令行工具使用,并通过直观的Galaxy网络界面提供,同时还提供了工作流程的详细文档。我们通过以下方式证明了immuneML的广泛适用性:(i)重现一项关于免疫状态预测的大规模研究;(ii)开发、整合并应用一种用于抗原特异性预测的新型深度学习方法;(iii)展示以简化的可解释性为重点的AIRR ML基准测试。

相似文献

1
The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires.
Nat Mach Intell. 2021 Nov;3(11):936-944. doi: 10.1038/s42256-021-00413-z. Epub 2021 Nov 16.
2
CompAIRR: ultra-fast comparison of adaptive immune receptor repertoires by exact and approximate sequence matching.
Bioinformatics. 2022 Sep 2;38(17):4230-4232. doi: 10.1093/bioinformatics/btac505.
6
Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive Immune Repertoires.
Front Immunol. 2018 Feb 21;9:224. doi: 10.3389/fimmu.2018.00224. eCollection 2018.
7
Adaptive Immune Receptor Repertoire (AIRR) Community Guide to TR and IG Gene Annotation.
Methods Mol Biol. 2022;2453:279-296. doi: 10.1007/978-1-0716-2115-8_16.
8
The ADC API: A Web API for the Programmatic Query of the AIRR Data Commons.
Front Big Data. 2020 Jun 17;3:22. doi: 10.3389/fdata.2020.00022. eCollection 2020.
9
Tavaxy: integrating Taverna and Galaxy workflows with cloud computing support.
BMC Bioinformatics. 2012 May 4;13:77. doi: 10.1186/1471-2105-13-77.
10
immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking.
Bioinformatics. 2020 Jun 1;36(11):3594-3596. doi: 10.1093/bioinformatics/btaa158.

引用本文的文献

1
Role of artificial intelligence in advancing immunology.
Immunol Res. 2025 Apr 24;73(1):76. doi: 10.1007/s12026-025-09632-7.
5
Leveraging artificial intelligence and machine learning to accelerate discovery of disease-modifying therapies in type 1 diabetes.
Diabetologia. 2025 Mar;68(3):477-494. doi: 10.1007/s00125-024-06339-6. Epub 2024 Dec 19.
7
Predictability of antigen binding based on short motifs in the antibody CDRH3.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae537.
10
nf-core/airrflow: An adaptive immune receptor repertoire analysis workflow employing the Immcantation framework.
PLoS Comput Biol. 2024 Jul 26;20(7):e1012265. doi: 10.1371/journal.pcbi.1012265. eCollection 2024 Jul.

本文引用的文献

1
Machine Learning Analysis of Naïve B-Cell Receptor Repertoires Stratifies Celiac Disease Patients and Controls.
Front Immunol. 2021 Mar 10;12:627813. doi: 10.3389/fimmu.2021.627813. eCollection 2021.
2
The Future of Blood Testing Is the Immunome.
Front Immunol. 2021 Mar 15;12:626793. doi: 10.3389/fimmu.2021.626793. eCollection 2021.
3
Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery.
Trends Biotechnol. 2021 Dec;39(12):1263-1273. doi: 10.1016/j.tibtech.2021.03.003. Epub 2021 Mar 25.
4
Predicting recognition between T cell receptors and epitopes with TCRGP.
PLoS Comput Biol. 2021 Mar 25;17(3):e1008814. doi: 10.1371/journal.pcbi.1008814. eCollection 2021 Mar.
5
A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding.
Cell Rep. 2021 Mar 16;34(11):108856. doi: 10.1016/j.celrep.2021.108856.
6
DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires.
Nat Commun. 2021 Mar 11;12(1):1605. doi: 10.1038/s41467-021-21879-w.
7
The ADC API: A Web API for the Programmatic Query of the AIRR Data Commons.
Front Big Data. 2020 Jun 17;3:22. doi: 10.3389/fdata.2020.00022. eCollection 2020.
8
SIMON: Open-Source Knowledge Discovery Platform.
Patterns (N Y). 2021 Jan 8;2(1):100178. doi: 10.1016/j.patter.2020.100178.
9
Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation.
Trends Pharmacol Sci. 2021 Mar;42(3):151-165. doi: 10.1016/j.tips.2020.12.004. Epub 2021 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验