Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic.
Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic.
ACS Chem Neurosci. 2024 Aug 7;15(15):2811-2821. doi: 10.1021/acschemneuro.4c00190. Epub 2024 Jul 26.
Neonatal hypoxic-ischemic (HI) brain insult is a major cause of neonatal mortality and morbidity. To assess the underlying pathological mechanisms, we mapped the spatiotemporal changes in polyamine, amino acid, and neurotransmitter levels, following HI insult (by the Rice-Vannucci method) in the brains of seven-day-old rat pups. Matrix-assisted laser desorption/ionization mass spectrometry imaging of chemically modified small-molecule metabolites by 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide revealed critical HI-related metabolomic changes of 22 metabolites in 14 rat brain subregions, much earlier than light microscopy detected signs of neuronal damage. For the first time, we demonstrated excessive polyamine oxidation and accumulation of 3-aminopropanal in HI neonatal brains, which was later accompanied by neuronal apoptosis enhanced by increases in glycine and norepinephrine in critically affected brain regions. Specifically, putrescine, cadaverine, and 3-aminopropanal increased significantly as early as 12 h postinsult, mainly in motor and somatosensory cortex, hippocampus, and midbrain, followed by an increase in norepinephrine 24 h postinsult, which was predominant in the caudate putamen, the region most vulnerable to HI. The decrease of γ-aminobutyric acid (GABA) and the continuous dysregulation of the GABAergic system together with low taurine levels up to 36 h sustained progressive neurodegenerative cellular processes. The molecular alterations presented here at the subregional rat brain level provided unprecedented insight into early metabolomic changes in HI-insulted neonatal brains, which may further aid in the identification of novel therapeutic targets for the treatment of neonatal HI encephalopathy.
新生儿缺氧缺血性(HI)脑损伤是新生儿死亡和发病的主要原因。为了评估潜在的病理机制,我们采用 Rice-Vannucci 方法在 7 日龄大鼠幼仔的大脑中研究了 HI 损伤后多胺、氨基酸和神经递质水平的时空变化。通过 4-(蒽-9-基)-2-氟-1-甲基吡啶-1-碘化物对化学修饰的小分子代谢物进行基质辅助激光解吸/电离质谱成像,揭示了 14 个大鼠脑区 22 种代谢物与 HI 相关的关键代谢组学变化,比光镜检测到神经元损伤的迹象要早得多。我们首次证明 HI 新生脑中存在过度的多胺氧化和 3-丙烯醛积累,随后在受影响严重的脑区中,通过增加甘氨酸和去甲肾上腺素增强了神经元凋亡。具体而言,精胺、尸胺和 3-丙烯醛在损伤后 12 小时内就显著增加,主要在运动和体感皮层、海马体和中脑,随后在损伤后 24 小时内去甲肾上腺素增加,主要在尾状核,这是最易受 HI 影响的区域。γ-氨基丁酸(GABA)的减少以及 GABA 能系统的持续失调以及牛磺酸水平低至 36 小时,维持了进行性神经退行性细胞过程。这里在大鼠脑区水平上呈现的分子改变为 HI 损伤新生儿大脑中的早期代谢组学变化提供了前所未有的见解,这可能有助于鉴定治疗新生儿 HI 脑病的新的治疗靶点。