INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621 Lyon, France; INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, Centrale Lyon, Université Lumière Lyon 2, LIRIS, UMR5205, F-69621 Villeurbanne, France.
INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, Centrale Lyon, Université Lumière Lyon 2, LIRIS, UMR5205, F-69621 Villeurbanne, France.
Med Image Anal. 2024 Oct;97:103270. doi: 10.1016/j.media.2024.103270. Epub 2024 Jul 14.
Recently, federated learning has raised increasing interest in the medical image analysis field due to its ability to aggregate multi-center data with privacy-preserving properties. A large amount of federated training schemes have been published, which we categorize into global (one final model), personalized (one model per institution) or hybrid (one model per cluster of institutions) methods. However, their applicability on the recently published Federated Brain Tumor Segmentation 2022 dataset has not been explored yet. We propose an extensive benchmark of federated learning algorithms from all three classes on this task. While standard FedAvg already performs very well, we show that some methods from each category can bring a slight performance improvement and potentially limit the final model(s) bias toward the predominant data distribution of the federation. Moreover, we provide a deeper understanding of the behavior of federated learning on this task through alternative ways of distributing the pooled dataset among institutions, namely an Independent and Identical Distributed (IID) setup, and a limited data setup. Our code is available at (https://github.com/MatthisManthe/Benchmark_FeTS2022).
最近,联邦学习因其具有聚合具有隐私保护性质的多中心数据的能力,在医学图像分析领域引起了越来越多的关注。已经发布了大量的联邦训练方案,我们将其分为全局(一个最终模型)、个性化(每个机构一个模型)或混合(每个机构集群一个模型)方法。然而,它们在最近发布的联邦脑肿瘤分割 2022 数据集上的适用性尚未得到探索。我们在这个任务上对来自所有三个类别的联邦学习算法进行了广泛的基准测试。虽然标准的 FedAvg 已经表现得非常好,但我们表明每个类别中的一些方法可以带来轻微的性能提升,并有可能限制联邦学习最终模型对联盟主要数据分布的偏见。此外,我们通过在机构之间分配汇集数据集的替代方式,即独立且相同分布(IID)设置和有限数据设置,更深入地了解联邦学习在该任务上的行为。我们的代码可在(https://github.com/MatthisManthe/Benchmark_FeTS2022)获得。