Suppr超能文献

基于参考的序列预测剪接和剪接改变突变。

Reference-informed prediction of alternative splicing and splicing-altering mutations from sequences.

机构信息

Bioinformatics Division, BNRIST, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

Department of Systems Biology, Columbia University, New York, New York 10032, USA.

出版信息

Genome Res. 2024 Aug 20;34(7):1052-1065. doi: 10.1101/gr.279044.124.

Abstract

Alternative splicing plays a crucial role in protein diversity and gene expression regulation in higher eukaryotes, and mutations causing dysregulated splicing underlie a range of genetic diseases. Computational prediction of alternative splicing from genomic sequences not only provides insight into gene-regulatory mechanisms but also helps identify disease-causing mutations and drug targets. However, the current methods for the quantitative prediction of splice site usage still have limited accuracy. Here, we present DeltaSplice, a deep neural network model optimized to learn the impact of mutations on quantitative changes in alternative splicing from the comparative analysis of homologous genes. The model architecture enables DeltaSplice to perform "reference-informed prediction" by incorporating the known splice site usage of a reference gene sequence to improve its prediction on splicing-altering mutations. We benchmarked DeltaSplice and several other state-of-the-art methods on various prediction tasks, including evolutionary sequence divergence on lineage-specific splicing and splicing-altering mutations in human populations and neurodevelopmental disorders, and demonstrated that DeltaSplice outperformed consistently. DeltaSplice predicted ∼15% of splicing quantitative trait loci (sQTLs) in the human brain as causal splicing-altering variants. It also predicted splicing-altering de novo mutations outside the splice sites in a subset of patients affected by autism and other neurodevelopmental disorders (NDDs), including 19 genes with recurrent splicing-altering mutations. Integration of splicing-altering mutations with other types of de novo mutation burdens allowed the prediction of eight novel NDD-risk genes. Our work expanded the capacity of in silico splicing models with potential applications in genetic diagnosis and the development of splicing-based precision medicine.

摘要

可变剪接在高等真核生物的蛋白质多样性和基因表达调控中起着至关重要的作用,而导致剪接失调的突变是一系列遗传疾病的基础。从基因组序列中计算预测可变剪接不仅可以深入了解基因调控机制,还有助于识别致病突变和药物靶点。然而,目前定量预测剪接位点使用的方法仍然存在一定的局限性。在这里,我们提出了 DeltaSplice,这是一种经过优化的深度学习神经网络模型,能够从同源基因的比较分析中学习突变对可变剪接定量变化的影响。该模型架构使 DeltaSplice 能够通过整合参考基因序列的已知剪接位点使用情况来进行“参考信息预测”,从而提高其对剪接改变突变的预测能力。我们在各种预测任务上对 DeltaSplice 和其他几种最先进的方法进行了基准测试,包括谱系特异性剪接的进化序列分歧以及人类群体和神经发育障碍中的剪接改变突变,并证明 DeltaSplice 的表现始终优于其他方法。DeltaSplice 预测了人类大脑中约 15%的剪接数量性状基因座(sQTL)作为因果剪接改变变体。它还预测了自闭症和其他神经发育障碍(NDD)患者子集中外源剪接位点的剪接改变新生突变,包括 19 个具有反复剪接改变突变的基因。将剪接改变突变与其他类型的新生突变负担进行整合,可预测出 8 个新的 NDD 风险基因。我们的工作扩展了计算剪接模型的能力,具有在遗传诊断和基于剪接的精准医疗开发方面的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cc1/11368187/7a926a805ed7/1052f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验