Suppr超能文献

基于影像组学的深度学习网络对帕金森综合征进行鉴别诊断分类。

Radiomics-Guided Deep Learning Networks Classify Differential Diagnosis of Parkinsonism.

作者信息

Ling Ronghua, Wang Min, Lu Jiaying, Wu Shaoyou, Wu Ping, Ge Jingjie, Wang Luyao, Liu Yingqian, Jiang Juanjuan, Shi Kuangyu, Yan Zhuangzhi, Zuo Chuantao, Jiang Jiehui

机构信息

School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China.

School of Medical Imaging, Shanghai University of Medicine & Health Science, Shanghai 201318, China.

出版信息

Brain Sci. 2024 Jul 4;14(7):680. doi: 10.3390/brainsci14070680.

Abstract

The differential diagnosis between atypical Parkinsonian syndromes may be challenging and critical. We aimed to proposed a radiomics-guided deep learning (DL) model to discover interpretable DL features and further verify the proposed model through the differential diagnosis of Parkinsonian syndromes. We recruited 1495 subjects for F-fluorodeoxyglucose positron emission tomography (F-FDG PET) scanning, including 220 healthy controls and 1275 patients diagnosed with idiopathic Parkinson's disease (IPD), multiple system atrophy (MSA), or progressive supranuclear palsy (PSP). Baseline radiomics and two DL models were developed and tested for the Parkinsonian diagnosis. The DL latent features were extracted from the last layer and subsequently guided by radiomics. The radiomics-guided DL model outperformed the baseline radiomics approach, suggesting the effectiveness of the DL approach. DenseNet showed the best diagnosis ability (sensitivity: 95.7%, 90.1%, and 91.2% for IPD, MSA, and PSP, respectively) using retained DL features in the test dataset. The retained DL latent features were significantly associated with radiomics features and could be interpreted through biological explanations of handcrafted radiomics features. The radiomics-guided DL model offers interpretable high-level abstract information for differential diagnosis of Parkinsonian disorders and holds considerable promise for personalized disease monitoring.

摘要

非典型帕金森综合征之间的鉴别诊断可能具有挑战性且至关重要。我们旨在提出一种基于影像组学的深度学习(DL)模型,以发现可解释的DL特征,并通过帕金森综合征的鉴别诊断进一步验证所提出的模型。我们招募了1495名受试者进行氟代脱氧葡萄糖正电子发射断层扫描(F-FDG PET),包括220名健康对照者和1275名被诊断为特发性帕金森病(IPD)、多系统萎缩(MSA)或进行性核上性麻痹(PSP)的患者。开发并测试了基线影像组学和两种DL模型用于帕金森病诊断。从最后一层提取DL潜在特征,随后以影像组学为指导。基于影像组学的DL模型优于基线影像组学方法,表明DL方法的有效性。在测试数据集中,使用保留的DL特征时,DenseNet显示出最佳诊断能力(IPD、MSA和PSP的敏感性分别为9

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d72/11274493/68e956a30f4f/brainsci-14-00680-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验