Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.
School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China.
Eur Radiol. 2024 Jan;34(1):662-672. doi: 10.1007/s00330-023-10003-9. Epub 2023 Aug 3.
To construct a machine learning model for differentiating Parkinson's disease (PD) and multiple system atrophy (MSA) by using multimodal PET/MRI radiomics and clinical characteristics.
One hundred and nineteen patients (81 with PD and 38 with MSA) underwent brain PET/CT and MRI to obtain metabolic images ([F]FDG, [C]CFT PET) and structural MRI (T1WI, T2WI, and T2-FLAIR). Image analysis included automatic segmentation on MRI, co-registration of PET images onto the corresponding MRI. Radiomics features were then extracted from the putamina and caudate nuclei and selected to construct predictive models. Moreover, based on PET/MRI radiomics and clinical characteristics, we developed a nomogram. Receiver operating characteristic (ROC) curves were performed to evaluate the performance of the models. Decision curve analysis (DCA) was employed to access the clinical usefulness of the models.
The combined PET/MRI radiomics model of five sequences outperformed monomodal radiomics models alone. Further, PET/MRI radiomics-clinical combined model could perfectly distinguish PD from MSA (AUC = 0.993), which outperformed the clinical model (AUC = 0.923, p = 0.028) in training set, with no significant difference in test set (AUC = 0.860 vs 0.917, p = 0.390). However, no significant difference was found between PET/MRI radiomics-clinical model and PET/MRI radiomics model in training (AUC = 0.988, p = 0.276) and test sets (AUC = 0.860 vs 0.845, p = 0.632). DCA demonstrated the highest clinical benefit of PET/MRI radiomics-clinical model.
Our study indicates that multimodal PET/MRI radiomics could achieve promising performance to differentiate between PD and MSA in clinics.
This study developed an optimal radiomics signature and construct model to distinguish PD from MSA by multimodal PET/MRI imaging methods in clinics for parkinsonian syndromes, which achieved an excellent performance.
•Multimodal PET/MRI radiomics from putamina and caudate nuclei increase the diagnostic efficiency for distinguishing PD from MSA. •The radiomics-based nomogram was developed to differentiate between PD and MSA. •Combining PET/MRI radiomics-clinical model achieved promising performance to identify PD and MSA.
通过多模态 PET/MRI 放射组学和临床特征构建用于区分帕金森病 (PD) 和多系统萎缩 (MSA) 的机器学习模型。
119 名患者(81 名 PD 和 38 名 MSA)接受脑部 PET/CT 和 MRI 检查,以获取代谢图像 ([F]FDG、[C]CFT PET) 和结构 MRI(T1WI、T2WI 和 T2-FLAIR)。图像分析包括 MRI 上的自动分割,将 PET 图像配准到相应的 MRI 上。然后从壳核和尾状核提取放射组学特征,并选择用于构建预测模型。此外,基于 PET/MRI 放射组学和临床特征,我们开发了一个列线图。通过绘制接收器工作特征 (ROC) 曲线来评估模型的性能。决策曲线分析 (DCA) 用于评估模型的临床实用性。
五种序列的联合 PET/MRI 放射组学模型优于单独的单模态放射组学模型。此外,PET/MRI 放射组学-临床联合模型能够完美地区分 PD 和 MSA(AUC=0.993),在训练集中优于临床模型(AUC=0.923,p=0.028),在测试集中无显著差异(AUC=0.860 vs 0.917,p=0.390)。然而,在训练集(AUC=0.988,p=0.276)和测试集(AUC=0.860 vs 0.845,p=0.632)中,PET/MRI 放射组学-临床模型与 PET/MRI 放射组学模型之间无显著差异。DCA 表明 PET/MRI 放射组学-临床模型具有最高的临床获益。
我们的研究表明,多模态 PET/MRI 放射组学在临床上能够实现区分 PD 和 MSA 的有前途的性能。
本研究通过多模态 PET/MRI 成像方法开发了最佳的放射组学特征和构建模型,用于区分帕金森综合征中的 PD 和 MSA,具有出色的性能。
壳核和尾状核的多模态 PET/MRI 放射组学可提高区分 PD 和 MSA 的诊断效率。
基于放射组学的列线图用于区分 PD 和 MSA。
结合 PET/MRI 放射组学-临床模型可实现识别 PD 和 MSA 的有前途的性能。