Chae Seunghye, Yang Ehwa, Moon Won-Jin, Kim Jae-Hun
Medical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea.
School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea.
Diagnostics (Basel). 2024 Jul 12;14(14):1504. doi: 10.3390/diagnostics14141504.
In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia and Parkinson's disease. Accurate assessment of ePVS is crucial for early diagnosis and monitoring disease progression. Our approach first utilizes an ePVS enhancement CNN to improve ePVS visibility and then employs a quantification CNN to predict the number of ePVSs. The ePVS enhancement CNN selectively enhances the ePVS areas without the need for additional heuristic parameters, achieving a higher contrast-to-noise ratio (CNR) of 113.77 compared to Tophat, Clahe, and Laplacian-based enhancement algorithms. The subsequent ePVS quantification CNN was trained and validated using fourfold cross-validation on a dataset of 76 participants. The quantification CNN attained 88% accuracy at the image level and 94% accuracy at the subject level. These results demonstrate significant improvements over traditional algorithm-based methods, highlighting the robustness and reliability of our deep learning approach. The proposed cascaded deep CNN model not only enhances the visibility of ePVS but also provides accurate quantification, making it a promising tool for evaluating neurodegenerative disorders. This method offers a novel and significant advancement in the non-invasive assessment of ePVS, potentially aiding in early diagnosis and targeted treatment strategies.
在本文中,我们提出了一种级联深度卷积神经网络(CNN),用于使用T2加权磁共振成像(MRI)评估基底节区域内的血管周围间隙增宽(ePVS)。血管周围间隙增宽(ePVS)是包括痴呆和帕金森病在内的各种神经退行性疾病的潜在生物标志物。准确评估ePVS对于早期诊断和监测疾病进展至关重要。我们的方法首先利用一个ePVS增强CNN来提高ePVS的可见性,然后采用一个量化CNN来预测ePVS的数量。ePVS增强CNN无需额外的启发式参数即可选择性地增强ePVS区域,与基于Tophat、Clahe和拉普拉斯的增强算法相比,实现了更高的113.77的对比度噪声比(CNR)。随后的ePVS量化CNN在一个包含76名参与者的数据集上使用四重交叉验证进行了训练和验证。量化CNN在图像层面达到了88%的准确率,在受试者层面达到了94%的准确率。这些结果表明,与传统的基于算法的方法相比有显著改进,突出了我们深度学习方法的稳健性和可靠性。所提出的级联深度CNN模型不仅增强了ePVS的可见性,还提供了准确的量化,使其成为评估神经退行性疾病的一个有前途的工具。这种方法在ePVS的非侵入性评估方面提供了一种新颖且重要的进展,可能有助于早期诊断和靶向治疗策略。