Suppr超能文献

使用密集连接深度卷积神经网络增强血管周围间隙

Enhancement of Perivascular Spaces Using Densely Connected Deep Convolutional Neural Network.

作者信息

Jung Euijin, Chikontwe Philip, Zong Xiaopeng, Lin Weili, Shen Dinggang, Park Sang Hyun

机构信息

Department of Robotics Engineering, DGIST, Daegu 42988, South Korea.

Biomedical Research Imaging Center, Department of Radiology, The University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

IEEE Access. 2019;7:18382-18391. doi: 10.1109/ACCESS.2019.2896911. Epub 2019 Feb 1.

Abstract

Perivascular spaces (PVS) in the human brain are related to various brain diseases. However, it is difficult to quantify them due to their thin and blurry appearance. In this paper, we introduce a deep-learning-based method, which can enhance a magnetic resonance (MR) image to better visualize the PVS. To accurately predict the enhanced image, we propose a very deep 3D convolutional neural network that contains densely connected networks with skip connections. The proposed networks can utilize rich contextual information derived from low-level to high-level features and effectively alleviate the gradient vanishing problem caused by the deep layers. The proposed method is evaluated on 17 7T MR images by a twofold cross-validation. The experiments show that our proposed network is much more effective to enhance the PVS than the previous PVS enhancement methods.

摘要

人脑的血管周围间隙(PVS)与多种脑部疾病相关。然而,由于其外观纤细且模糊,难以对其进行量化。在本文中,我们介绍了一种基于深度学习的方法,该方法可以增强磁共振(MR)图像,以便更好地可视化PVS。为了准确预测增强后的图像,我们提出了一种非常深的3D卷积神经网络,它包含具有跳跃连接的密集连接网络。所提出的网络可以利用从低级到高级特征派生的丰富上下文信息,并有效缓解由深层导致的梯度消失问题。通过双重交叉验证在17张7T MR图像上对所提出的方法进行了评估。实验表明,我们提出的网络在增强PVS方面比以前的PVS增强方法有效得多。

相似文献

8
The feasibility of quantitative MRI of perivascular spaces at 7T.7T下血管周围间隙定量磁共振成像的可行性
J Neurosci Methods. 2015 Dec 30;256:151-6. doi: 10.1016/j.jneumeth.2015.09.001. Epub 2015 Sep 8.

引用本文的文献

2
Perivascular space imaging during therapy for medulloblastoma.髓母细胞瘤治疗期间的血管周围间隙成像
PLoS One. 2025 Feb 7;20(2):e0318278. doi: 10.1371/journal.pone.0318278. eCollection 2025.
8
Imaging perivascular space structure and function using brain MRI.利用脑 MRI 成像研究血管周围空间的结构和功能。
Neuroimage. 2022 Aug 15;257:119329. doi: 10.1016/j.neuroimage.2022.119329. Epub 2022 May 21.

本文引用的文献

1
Medical Image Synthesis with Deep Convolutional Adversarial Networks.基于深度卷积对抗网络的医学图像合成。
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.
7
Image Super-Resolution Using Deep Convolutional Networks.基于深度卷积网络的图像超分辨率重建。
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验