Suppr超能文献

机器学习用于预测新冠肺炎合并急性肾损伤患者的慢性肾病进展:一项可行性研究

Machine Learning for Predicting Chronic Renal Disease Progression in COVID-19 Patients with Acute Renal Injury: A Feasibility Study.

作者信息

Gracida-Osorno Carlos, Molina-Salinas Gloria María, Góngora-Hernández Roxana, Brito-Loeza Carlos, Uc-Cachón Andrés Humberto, Paniagua-Sierra José Ramón

机构信息

Servicio de Medicina Interna, Hospital General Regional No. 1, CMN Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Mexico.

Unidad de Investigación Médica Yucatán, Hospital de Especialidades, CMN Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Mexico.

出版信息

Biomedicines. 2024 Jul 8;12(7):1511. doi: 10.3390/biomedicines12071511.

Abstract

This study aimed to determine the feasibility of applying machine-learning methods to assess the progression of chronic kidney disease (CKD) in patients with coronavirus disease (COVID-19) and acute renal injury (AKI). The study was conducted on patients aged 18 years or older who were diagnosed with COVID-19 and AKI between April 2020 and March 2021, and admitted to a second-level hospital in Mérida, Yucatán, México. Of the admitted patients, 47.92% died and 52.06% were discharged. Among the discharged patients, 176 developed AKI during hospitalization, and 131 agreed to participate in the study. The study's results indicated that the area under the receiver operating characteristic curve (AUC-ROC) for the four models was 0.826 for the support vector machine (SVM), 0.828 for the random forest, 0.840 for the logistic regression, and 0.841 for the boosting model. Variable selection methods were utilized to enhance the performance of the classifier, with the SVM model demonstrating the best overall performance, achieving a classification rate of 99.8% ± 0.1 in the training set and 98.43% ± 1.79 in the validation set in AUC-ROC values. These findings have the potential to aid in the early detection and management of CKD, a complication of AKI resulting from COVID-19. Further research is required to confirm these results.

摘要

本研究旨在确定应用机器学习方法评估冠状病毒病(COVID-19)和急性肾损伤(AKI)患者慢性肾脏病(CKD)进展的可行性。该研究针对2020年4月至2021年3月期间被诊断为COVID-19和AKI且年龄在18岁及以上、入住墨西哥尤卡坦州梅里达市一家二级医院的患者进行。在入院患者中,47.92%死亡,52.06%出院。在出院患者中,176人在住院期间发生了AKI,其中131人同意参与研究。研究结果表明,四种模型的受试者操作特征曲线下面积(AUC-ROC)分别为:支持向量机(SVM)为0.826,随机森林为0.828,逻辑回归为0.840,增强模型为0.841。采用变量选择方法来提高分类器的性能,SVM模型总体表现最佳,在训练集中AUC-ROC值的分类率为99.8%±0.1,在验证集中为98.43%±1.79。这些发现有可能有助于早期发现和管理CKD,CKD是COVID-19导致的AKI的一种并发症。需要进一步研究来证实这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0ce/11274434/462f0674e3e1/biomedicines-12-01511-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验