Suppr超能文献

预测 ICU 急性肾损伤患者的肾功能恢复和短期可逆性:机器学习方法与传统回归的比较。

Predicting renal function recovery and short-term reversibility among acute kidney injury patients in the ICU: comparison of machine learning methods and conventional regression.

机构信息

Department of Intensive Care Medicine, Trauma Center, Peking University People's Hospital, Beijing, PR China.

Department of Yunnan Baiyao Group Medicine Electronic Commerce Co., Ltd, Beijing, PR China.

出版信息

Ren Fail. 2022 Dec;44(1):1326-1337. doi: 10.1080/0886022X.2022.2107542.

Abstract

BACKGROUND

Acute kidney injury (AKI) is one of the most frequent complications of critical illness. We aimed to explore the predictors of renal function recovery and the short-term reversibility after AKI by comparing logistic regression with four machine learning models.

METHODS

We reviewed patients who were diagnosed with AKI in the MIMIC-IV database between 2008 and 2019. Recovery from AKI within 72 h of the initiating event was typically recognized as the short-term reversal of AKI. Conventional logistic regression and four different machine algorithms (XGBoost algorithm model, Bayesian networks [BNs], random forest [RF] model, and support vector machine [SVM] model) were used to develop and validate prediction models. The performance measures were compared through the area under the receiver operating characteristic curve (AU-ROC), calibration curves, and 10-fold cross-validation.

RESULTS

A total of 12,321 critically ill adult AKI patients were included in our analysis cohort. The renal function recovery rate after AKI was 67.9%. The maximum and minimum serum creatinine (SCr) within 24 h of AKI diagnosis, the minimum SCr within 24 and 12 h, and antibiotics usage duration were independently associated with renal function recovery after AKI. Among the 8364 recovered patients, the maximum SCr within 24 h of AKI diagnosis, the minimum Glasgow Coma Scale (GCS) score, the maximum blood urea nitrogen (BUN) within 24 h, vasopressin and vancomycin usage, and the maximum lactate within 24 h were the top six predictors for short-term reversibility of AKI. The RF model presented the best performance for predicting both renal functional recovery (AU-ROC [0.8295 ± 0.01]) and early recovery (AU-ROC [0.7683 ± 0.03]) compared with the conventional logistic regression model.

CONCLUSIONS

The maximum SCr within 24 h of AKI diagnosis was a common independent predictor of renal function recovery and the short-term reversibility of AKI. The RF machine learning algorithms showed a superior ability to predict the prognosis of AKI patients in the ICU compared with the traditional regression models. These models may prove to be clinically helpful and can assist clinicians in providing timely interventions, potentially leading to improved prognoses.

摘要

背景

急性肾损伤 (AKI) 是危重病最常见的并发症之一。我们旨在通过比较逻辑回归和四种机器学习模型来探讨肾功能恢复和 AKI 短期逆转的预测因素。

方法

我们回顾了 2008 年至 2019 年间在 MIMIC-IV 数据库中诊断为 AKI 的患者。通常,在起始事件后 72 小时内恢复 AKI 被认为是 AKI 的短期逆转。使用传统逻辑回归和四种不同的机器算法(XGBoost 算法模型、贝叶斯网络 [BNs]、随机森林 [RF] 模型和支持向量机 [SVM] 模型)来开发和验证预测模型。通过接收者操作特征曲线下面积(AU-ROC)、校准曲线和 10 倍交叉验证来比较性能指标。

结果

总共纳入了我们分析队列中的 12321 名重症 AKI 成年患者。AKI 后肾功能恢复率为 67.9%。AKI 诊断后 24 小时内最大和最小血清肌酐(SCr)、24 小时内和 12 小时内最小 SCr 和抗生素使用时间与 AKI 后肾功能恢复独立相关。在 8364 名恢复的患者中,AKI 诊断后 24 小时内最大 SCr、最小格拉斯哥昏迷评分(GCS)、24 小时内最大血尿素氮(BUN)、血管加压素和万古霉素使用以及 24 小时内最大乳酸是 AKI 短期逆转的前六大预测因素。与传统逻辑回归模型相比,RF 模型在预测肾功能恢复(AU-ROC [0.8295 ± 0.01])和早期恢复(AU-ROC [0.7683 ± 0.03])方面表现出最佳性能。

结论

AKI 后 24 小时内最大 SCr 是肾功能恢复和 AKI 短期逆转的共同独立预测因素。RF 机器学习算法在预测 ICU 中 AKI 患者的预后方面表现出优于传统回归模型的能力。这些模型可能具有临床价值,并有助于临床医生提供及时的干预措施,从而可能改善预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/9359199/ec595da73660/IRNF_A_2107542_F0001_B.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验