Suppr超能文献

基于增强随机森林模型预测毕业生离职率的研究

Research on Predicting the Turnover of Graduates Using an Enhanced Random Forest Model.

作者信息

Liu Min, Yang Bo, Song Yuhang

机构信息

School of Marxism Studies, Xi'an Polytechnic University, Xi'an 710048, China.

School of Computer Science, Xi'an Polytechnic University, Xi'an 710048, China.

出版信息

Behav Sci (Basel). 2024 Jul 4;14(7):562. doi: 10.3390/bs14070562.

Abstract

The frequent turnover of college graduates is a key factor leading to the frictional unemployment and structural unemployment of youth, which are important research fields concerned with pedagogy, sociology, and management; however, there is little research on the prediction of college graduates' turnover. Therefore, this study investigated the turnover status of 17,268 college graduates from 52 universities in China, constructed and optimized a random forest model for predicting the turnover of college graduates, and analyzed the influencing mechanism of college graduates' turnover and the importance of influencing factors. The enhanced random forest model could deal with the unbalanced data and has a higher prediction accuracy as well as stronger generalization ability in predicting the turnover of college graduates. Individual background variables, job characteristic variables, and work environment variables are all important factors influencing whether college graduates resign or not. The top five factors that affect the turnover of college graduates by more than 10% are income level, job satisfaction degree, job opportunities, and job matching degree. The conclusion of this study is conducive to improving the accuracy of turnover prediction, systematically exploring the influencing factors of college graduates' turnover, and effectively guaranteeing the overall stability of youth employment.

摘要

高校毕业生频繁流动是导致青年摩擦性失业和结构性失业的关键因素,这是教育学、社会学和管理学关注的重要研究领域;然而,关于高校毕业生流动预测的研究较少。因此,本研究调查了中国52所大学17268名高校毕业生的流动状况,构建并优化了预测高校毕业生流动的随机森林模型,分析了高校毕业生流动的影响机制及影响因素的重要性。增强随机森林模型能够处理不平衡数据,在预测高校毕业生流动方面具有较高的预测精度和较强的泛化能力。个人背景变量、工作特征变量和工作环境变量都是影响高校毕业生是否离职的重要因素。影响高校毕业生流动率超过10%的前五个因素是收入水平、工作满意度、工作机会和工作匹配度。本研究结论有利于提高流动预测的准确性,系统探究高校毕业生流动的影响因素,有效保障青年就业的整体稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6f9/11273853/5b7e8aef0a66/behavsci-14-00562-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验