Suppr超能文献

CRISPR-Cas 系统与基于 CRISPR 的基因编辑在血液学中的临床应用,重点关注遗传性造血系统恶性肿瘤倾向。

The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies.

机构信息

Molecular Oncology and Genetics, Diagnostic Laboratories, Versiti Blood Center of Wisconsin, Milwaukee, WI 53233, USA.

Department of Pathology and Anatomical Sciences, The University at Buffalo, Buffalo, NY 14260, USA.

出版信息

Genes (Basel). 2024 Jul 1;15(7):863. doi: 10.3390/genes15070863.

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing has begun to transform the treatment landscape of genetic diseases. The history of the discovery of CRISPR/CRISPR-associated (Cas) proteins/single-guide RNA (sgRNA)-based gene editing since the first report of repetitive sequences of unknown significance in 1987 is fascinating, highly instructive, and inspiring for future advances in medicine. The recent approval of CRISPR-Cas9-based gene therapy to treat patients with severe sickle cell anemia and transfusion-dependent β-thalassemia has renewed hope for treating other hematologic diseases, including patients with a germline predisposition to hematologic malignancies, who would benefit greatly from the development of CRISPR-inspired gene therapies. The purpose of this paper is three-fold: first, a chronological description of the history of CRISPR-Cas9-sgRNA-based gene editing; second, a brief description of the current state of clinical research in hematologic diseases, including selected applications in treating hematologic diseases with CRISPR-based gene therapy, preceded by a brief description of the current tools being used in clinical genome editing; and third, a presentation of the current progress in gene therapies in inherited hematologic diseases and bone marrow failure syndromes, to hopefully stimulate efforts towards developing these therapies for patients with inherited bone marrow failure syndromes and other inherited conditions with a germline predisposition to hematologic malignancies.

摘要

基于簇状规律间隔短回文重复序列(CRISPR)的基因编辑技术已经开始改变遗传性疾病的治疗格局。自 1987 年首次报道具有未知意义的重复序列以来,CRISPR/Cas 蛋白/单指导 RNA(sgRNA)的基因编辑的发现历史非常精彩,对于医学的未来发展具有高度的启发性。最近批准的基于 CRISPR-Cas9 的基因疗法用于治疗严重镰状细胞贫血和依赖输血的β-地中海贫血患者,为治疗其他血液病带来了新的希望,包括具有血液病恶性肿瘤种系易感性的患者,他们将从 CRISPR 启发的基因疗法的发展中受益匪浅。本文的目的有三:首先,按时间顺序描述 CRISPR-Cas9-sgRNA 基因编辑的历史;其次,简要介绍血液病的临床研究现状,包括 CRISPR 基因治疗治疗血液病的一些应用,并简要介绍当前用于临床基因组编辑的工具;最后,介绍遗传性血液病和骨髓衰竭综合征的基因治疗的最新进展,希望能够激发为遗传性骨髓衰竭综合征和其他具有血液病恶性肿瘤种系易感性的遗传疾病患者开发这些疗法的努力。

相似文献

2
CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments.
Cells. 2024 May 8;13(10):800. doi: 10.3390/cells13100800.
3
Mini review: genome and transcriptome editing using CRISPR-cas systems for haematological malignancy gene therapy.
Transgenic Res. 2021 Apr;30(2):129-141. doi: 10.1007/s11248-020-00232-9. Epub 2021 Feb 20.
4
CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia.
Ann Hematol. 2024 Jun;103(6):1805-1817. doi: 10.1007/s00277-023-05457-2. Epub 2023 Sep 22.
6
7
In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.
Circ Res. 2017 Sep 29;121(8):923-929. doi: 10.1161/CIRCRESAHA.117.310996. Epub 2017 Aug 8.
9
[Advances in gene therapy for β-thalassemia and hemophilia based on the CRISPR/Cas9 technology].
Yi Chuan. 2020 Oct 20;42(10):949-964. doi: 10.16288/j.yczz.20-110.
10
Therapeutic Genome Editing and In Vivo Delivery.
AAPS J. 2021 Jun 2;23(4):80. doi: 10.1208/s12248-021-00613-w.

引用本文的文献

1
Enhancer regulation in cancer: from epigenetics to mA RNA modification.
Arch Pharm Res. 2025 Aug 19. doi: 10.1007/s12272-025-01561-1.
2
Research Progress in Hematological Malignancies: A Molecular Genetics Perspective.
Genes (Basel). 2025 May 29;16(6):663. doi: 10.3390/genes16060663.
3
Emerging biologic and clinical implications of miR-182-5p in gynecologic cancers.
Clin Transl Oncol. 2025 Jun;27(6):2367-2382. doi: 10.1007/s12094-024-03822-9. Epub 2024 Dec 11.

本文引用的文献

3
4
FDA clears prime editors for testing in humans.
Nat Biotechnol. 2024 May;42(5):691. doi: 10.1038/s41587-024-02264-6.
5
Diagnosis, treatment, and surveillance of Diamond-Blackfan anaemia syndrome: international consensus statement.
Lancet Haematol. 2024 May;11(5):e368-e382. doi: 10.1016/S2352-3026(24)00063-2.
6
Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression.
Crit Rev Biochem Mol Biol. 2024 Feb-Apr;59(1-2):128-138. doi: 10.1080/10409238.2024.2344465. Epub 2024 Apr 25.
7
CRISPR-Cas9n-mediated ELANE promoter editing for gene therapy of severe congenital neutropenia.
Mol Ther. 2024 Jun 5;32(6):1628-1642. doi: 10.1016/j.ymthe.2024.03.037. Epub 2024 Mar 30.
8
Clinical features and management of germline CEBPA-mutated carriers.
Leuk Res. 2024 Mar;138:107453. doi: 10.1016/j.leukres.2024.107453. Epub 2024 Feb 3.
9
DDX41: exploring the roles of a versatile helicase.
Biochem Soc Trans. 2024 Feb 28;52(1):395-405. doi: 10.1042/BST20230725.
10
Combined absence of TRP53 target genes ZMAT3, PUMA and p21 cause a high incidence of cancer in mice.
Cell Death Differ. 2024 Feb;31(2):159-169. doi: 10.1038/s41418-023-01250-w. Epub 2023 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验