Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia.
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia.
Int J Mol Sci. 2024 Jul 22;25(14):7997. doi: 10.3390/ijms25147997.
Eukaryotic release factor eRF1, encoded by the gene, recognizes stop codons and induces peptide release during translation termination. produces several different transcripts as a result of alternative splicing, from which two eRF1 isoforms can be formed. Isoform 1 codes well-studied canonical eRF1, and isoform 2 is 33 amino acid residues shorter than isoform 1 and completely unstudied. Using a reconstituted mammalian in vitro translation system, we showed that the isoform 2 of human eRF1 is also involved in translation. We showed that eRF1iso2 can interact with the ribosomal subunits and pre-termination complex. However, its codon recognition and peptide release activities have decreased. Additionally, eRF1 isoform 2 exhibits unipotency to UGA. We found that eRF1 isoform 2 interacts with eRF3a but stimulated its GTPase activity significantly worse than the main isoform eRF1. Additionally, we studied the eRF1 isoform 2 effect on stop codon readthrough and translation in a cell-free translation system. We observed that eRF1 isoform 2 suppressed stop codon readthrough of the uORFs and decreased the efficiency of translation of long coding sequences. Based on these data, we assumed that human eRF1 isoform 2 can be involved in the regulation of translation termination. Moreover, our data support previously stated hypotheses that the GTS loop is important for the multipotency of eRF1 to all stop codons. Whereas helix α1 of the N-domain eRF1 is proposed to be involved in conformational rearrangements of eRF1 in the A-site of the ribosome that occur after GTP hydrolysis by eRF3, which ensure hydrolysis of peptidyl-tRNA at the P site of the ribosome.
真核释放因子 eRF1 由 基因编码,可识别终止密码子并在翻译终止时诱导肽释放。由于选择性剪接, 产生了几种不同的转录本,其中可以形成两种 eRF1 同工型。同工型 1 编码研究充分的典型 eRF1,同工型 2 比同工型 1 短 33 个氨基酸残基,完全未被研究。使用重组哺乳动物体外翻译系统,我们表明人 eRF1 的同工型 2 也参与翻译。我们表明 eRF1iso2 可以与核糖体亚基和预终止复合物相互作用。然而,其密码子识别和肽释放活性降低。此外,eRF1 同工型 2 表现出对 UGA 的单一功能。我们发现 eRF1 同工型 2 与 eRF3a 相互作用,但刺激其 GTPase 活性明显不如主要同工型 eRF1。此外,我们在无细胞翻译系统中研究了 eRF1 同工型 2 对终止密码子通读和翻译的影响。我们观察到 eRF1 同工型 2 抑制 uORFs 的终止密码子通读,并降低长编码序列的翻译效率。基于这些数据,我们假设人 eRF1 同工型 2 可以参与翻译终止的调节。此外,我们的数据支持先前提出的假设,即 GTS 环对于 eRF1 对所有终止密码子的多效性很重要。而 eRF1 的 N 结构域的 α1 螺旋被认为参与了 eRF3 水解 eRF1 中的 GTP 后 eRF1 在核糖体 A 位的构象重排,这确保了核糖体 P 位上肽酰-tRNA 的水解。