Suppr超能文献

由葡萄糖合成的金属催化碳泡沫作为高效电磁吸收剂

Metal-Catalyzed Carbon Foams Synthesized from Glucose as Highly Efficient Electromagnetic Absorbers.

作者信息

Liu Guan-Hong, Wei Chuan-Ying, Huang Ting, Wang Fei, Chang Jiang-Fan, Sun Qian, Zhang Xian-Hui

机构信息

School of Marine Engineering, Jimei University, Xiamen 361021, China.

Xiamen Branch of the Luoyang Ship Material Research Institute, Xiamen 361021, China.

出版信息

Materials (Basel). 2024 Jul 14;17(14):3488. doi: 10.3390/ma17143488.

Abstract

This paper introduces a novel method for preparing high-performance, metal-containing carbon foam wave-absorbing materials. The process involves foaming glucose through catalysis by transition metals followed by high-temperature pyrolysis. The resulting carbon foam materials exhibit a highly porous structure, which is essential for their wave-absorption properties. Notably, at a thickness of 2.0 mm, the glucose-derived carbon foam composite catalyzed by Fe and Co (GCF-CoFe) achieved a minimum reflection loss () of -51.4 dB at 15.11 GHz, along with an effective absorption bandwidth (EAB) of 5.20 GHz, spanning from 12.80 GHz to 18.00 GHz. These impressive performance metrics indicate that this approach offers a promising pathway for developing low-density, efficient carbon foam materials for wave-absorption applications. This advancement has significant implications for fields requiring effective electromagnetic interference (EMI) shielding, stealth technology, and other related applications, potentially leading to more efficient and lightweight solutions.

摘要

本文介绍了一种制备高性能含金属碳泡沫吸波材料的新方法。该过程包括通过过渡金属催化使葡萄糖发泡,然后进行高温热解。所得的碳泡沫材料呈现出高度多孔的结构,这对其吸波性能至关重要。值得注意的是,在厚度为2.0毫米时,由铁和钴催化的葡萄糖衍生碳泡沫复合材料(GCF-CoFe)在15.11吉赫兹时实现了-51.4分贝的最小反射损耗()以及5.20吉赫兹的有效吸收带宽(EAB),范围从12.80吉赫兹到18.00吉赫兹。这些令人印象深刻的性能指标表明,这种方法为开发用于吸波应用的低密度高效碳泡沫材料提供了一条有前景的途径。这一进展对需要有效电磁干扰(EMI)屏蔽、隐身技术及其他相关应用的领域具有重要意义,可能会带来更高效、更轻便的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a13/11278281/f66c7b03473f/materials-17-03488-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验