Han He, Chen Hui, Wang Rui, Lou Zhichao
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
Materials (Basel). 2024 Oct 28;17(21):5239. doi: 10.3390/ma17215239.
With the popularization of wireless communication, radar, and electronic devices, the hidden harm of electromagnetic radiation is becoming increasingly serious. The design of green biomass carbon-based interface heterojunctions based on lightweight porous materials can effectively protect against electromagnetic radiation hazards. In this work, we constructed an anisotropic heterojunction interface with magnetic and dielectric coupling based on a honeycomb-like periodic matrix multi-layer array repeating unit. The removal of lignin components from bamboo through oxidation enriches the impregnation pores and uniform adsorption sites of the magnetic medium. Further, in situ pyrolysis promotes the formation of a large number of electric dipoles at the interface between the magnetic medium and dielectric coupling inside the periodic cell carbon skeleton, enhancing interface polarization and relaxation. Local carrier traps and uneven electromagnetic density enhance dielectric and hysteresis losses, resulting in excellent impedance matching. Therefore, the obtained bamboo-based carbon multiphase composite absorbent has satisfactory electromagnetic loss characteristics. At a thickness of 1.55 mm, the effective absorption bandwidth reaches 5.1 GHz, and the minimum reflection loss (RL) value reaches -54.7 dB. In addition, the far-field radar simulation results show that the sample has an excellent RCS (radar cross-section) reduction of 33.3 dB·m. This work provides new directions for the diversified development of green biomass and the optimization of the design of magnetic and dielectric coupling in periodic array structures.
随着无线通信、雷达及电子设备的普及,电磁辐射的潜在危害日益严重。基于轻质多孔材料设计绿色生物质碳基界面异质结可有效抵御电磁辐射危害。在本工作中,我们基于蜂窝状周期性矩阵多层阵列重复单元构建了具有磁电耦合的各向异性异质结界面。通过氧化去除竹子中的木质素成分,丰富了磁性介质的浸渍孔和均匀吸附位点。进一步地,原位热解促进了周期性单元碳骨架内部磁性介质与电介质耦合界面处大量电偶极的形成,增强了界面极化和弛豫。局部载流子陷阱和不均匀的电磁密度增强了介电损耗和磁滞损耗,从而实现了优异的阻抗匹配。因此,所制备的竹基碳多相复合吸波材料具有令人满意的电磁损耗特性。在厚度为1.55 mm时,有效吸收带宽达到5.1 GHz,最小反射损耗(RL)值达到-54.7 dB。此外,远场雷达模拟结果表明,该样品具有33.3 dB·m的优异雷达散射截面(RCS)缩减量。本工作为绿色生物质的多元化发展以及周期性阵列结构中磁电耦合设计的优化提供了新方向。
J Colloid Interface Sci. 2022-4-15
Nanomicro Lett. 2023-11-17
Materials (Basel). 2024-7-14