Cappellini Iacopo, Campagnola Lorenzo, Consales Guglielmo
Department of Critical Care, Section of Anesthesiology and Critical Care, Azienda USL Toscana Centro, Ospedale Santo Stefano, 59100 Prato, Italy.
J Pers Med. 2024 Jun 24;14(7):677. doi: 10.3390/jpm14070677.
Electrical Impedance Tomography (EIT), combined with variable ventilation strategies and Artificial Intelligence (AI), is poised to revolutionize critical care by transitioning from reactive to predictive approaches. This integration aims to enhance patient outcomes through personalized interventions and real-time monitoring.
this narrative review explores the principles and applications of EIT, variable ventilation, and AI in critical care. EIT impedance sensing creates dynamic images of internal physiology, aiding the management of conditions like Acute Respiratory Distress Syndrome (ARDS). Variable ventilation mimics natural breathing variability to improve lung function and minimize ventilator-induced lung injury. AI enhances EIT through advanced image reconstruction techniques, neural networks, and digital twin technology, offering more accurate diagnostics and tailored therapeutic interventions.
the confluence of EIT, variable ventilation, and AI represents a significant advancement in critical care, enabling a predictive, personalized approach. EIT provides real-time insights into lung function, guiding precise ventilation adjustments and therapeutic interventions. AI integration enhances EIT diagnostic capabilities, facilitating the development of personalized treatment plans. This synergy fosters interdisciplinary collaborations and sets the stage for innovative research, ultimately improving patient outcomes and advancing the future of critical care.
电阻抗断层成像(EIT)与可变通气策略及人工智能(AI)相结合,有望通过从反应性方法向预测性方法的转变,彻底改变重症监护领域。这种整合旨在通过个性化干预和实时监测来改善患者预后。
本叙述性综述探讨了EIT、可变通气和AI在重症监护中的原理及应用。EIT阻抗传感可创建内部生理状况的动态图像,有助于管理急性呼吸窘迫综合征(ARDS)等病症。可变通气模拟自然呼吸变化以改善肺功能并将呼吸机诱发的肺损伤降至最低。AI通过先进的图像重建技术、神经网络和数字孪生技术增强EIT,提供更准确的诊断和量身定制的治疗干预措施。
EIT、可变通气和AI的融合代表了重症监护领域的重大进展,实现了预测性、个性化的方法。EIT可实时洞察肺功能,指导精确的通气调整和治疗干预。AI整合增强了EIT的诊断能力,有助于制定个性化治疗方案。这种协同作用促进了跨学科合作,为创新研究奠定了基础,最终改善患者预后并推动重症监护的未来发展。