Tao Qiannan, Liu Jianjun, Zheng Yu, Yang Yang, Lin Chuang, Guang Chenhan
School of Energy and Power Engineering, Beihang University, Beijing 100191, China.
School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China.
Micromachines (Basel). 2024 Jun 27;15(7):833. doi: 10.3390/mi15070833.
Retinal vein cannulation involves puncturing an occluded vessel on the micron scale. Even single millinewton force can cause permanent damage. An ophthalmic robot with a piezo-driven injector is precise enough to perform this delicate procedure, but the uncertain viscoelastic characteristics of the vessel make it difficult to achieve the desired contact force without harming the retina. The paper utilizes a viscoelastic contact model to explain the mechanical characteristics of retinal blood vessels to address this issue. The uncertainty in the viscoelastic properties is considered an internal disturbance of the contact model, and an active disturbance rejection controller is then proposed to precisely control the contact force. The experimental results show that this method can precisely adjust the contact force at the millinewton level even when the viscoelastic parameters vary significantly (up to 403.8%). The root mean square (RMS) and maximum value of steady-state error are 0.32 mN and 0.41 mN. The response time is below 2.51 s with no obvious overshoot.
视网膜静脉插管涉及在微米尺度上穿刺堵塞的血管。即使是单个毫牛顿的力也可能造成永久性损伤。带有压电驱动注射器的眼科机器人足够精确,可以执行这个精细的操作,但血管不确定的粘弹性特征使得在不损害视网膜的情况下难以实现所需的接触力。本文利用粘弹性接触模型来解释视网膜血管的力学特性以解决这个问题。粘弹性特性的不确定性被视为接触模型的内部干扰,然后提出了一种自抗扰控制器来精确控制接触力。实验结果表明,即使粘弹性参数有显著变化(高达403.8%),该方法也能在毫牛顿水平上精确调整接触力。稳态误差的均方根(RMS)和最大值分别为0.32 mN和0.41 mN。响应时间低于2.51 s,且无明显超调。