Castro Blanco Elisabet, Dalmau Llorca Maria Rosa, Aguilar Martín Carina, Carrasco-Querol Noèlia, Gonçalves Alessandra Queiroga, Hernández Rojas Zojaina, Coma Ermengol, Fernández-Sáez José
Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l'Ebre, 43500 Tortosa, Spain.
Campus Terres de l'Ebre, Universitat Rovira i Virgili, 43500 Tortosa, Spain.
Microorganisms. 2024 Jun 21;12(7):1257. doi: 10.3390/microorganisms12071257.
Influenza is a respiratory disease that causes annual epidemics during cold seasons. These epidemics increase pressure on healthcare systems, sometimes provoking their collapse. For this reason, a tool is needed to predict when an influenza epidemic will occur so that the healthcare system has time to prepare for it. This study therefore aims to develop a statistical model capable of predicting the onset of influenza epidemics in Catalonia, Spain. Influenza seasons from 2011 to 2017 were used for model training, and those from 2017 to 2018 were used for validation. Logistic regression, Support Vector Machine, and Random Forest models were used to predict the onset of the influenza epidemic. The logistic regression model was able to predict the start of influenza epidemics at least one week in advance, based on clinical diagnosis rates of various respiratory diseases and meteorological variables. This model achieved the best punctual estimates for two of three performance metrics. The most important variables in the model were the principal components of bronchiolitis rates and mean temperature. The onset of influenza epidemics can be predicted from clinical diagnosis rates of various respiratory diseases and meteorological variables. Future research should determine whether predictive models play a key role in preventing influenza.
流感是一种呼吸道疾病,在寒冷季节每年都会引发疫情。这些疫情给医疗系统带来压力,有时甚至导致其崩溃。因此,需要一种工具来预测流感疫情何时会发生,以便医疗系统有时间做好准备。因此,本研究旨在开发一种能够预测西班牙加泰罗尼亚流感疫情爆发的统计模型。2011年至2017年的流感季节用于模型训练,2017年至2018年的流感季节用于验证。使用逻辑回归、支持向量机和随机森林模型来预测流感疫情的爆发。逻辑回归模型能够根据各种呼吸道疾病的临床诊断率和气象变量,提前至少一周预测流感疫情的开始。该模型在三个性能指标中的两个上取得了最佳的即时估计。模型中最重要的变量是细支气管炎发病率的主成分和平均温度。可以根据各种呼吸道疾病的临床诊断率和气象变量预测流感疫情的爆发。未来的研究应该确定预测模型在预防流感方面是否起关键作用。