Carlos III University of Madrid, Leganés, Spain.
Barcelona Supercomputing Center, Barcelona, Spain.
BMC Infect Dis. 2020 Apr 5;20(1):265. doi: 10.1186/s12879-020-04977-w.
Predicting the details of how an epidemic evolves is highly valuable as health institutions need to better plan towards limiting the infection propagation effects and optimizing their prediction and response capabilities. Simulation is a cost- and time-effective way of predicting the evolution of the infection as the joint influence of many different factors: interaction patterns, personal characteristics, travel patterns, meteorological conditions, previous vaccination, etc. The work presented in this paper extends EpiGraph, our influenza epidemic simulator, by introducing a meteorological model as a modular component that interacts with the rest of EpiGraph's modules to refine our previous simulation results. Our goal is to estimate the effects of changes in temperature and relative humidity on the patterns of epidemic influenza based on data provided by the Spanish Influenza Sentinel Surveillance System (SISSS) and the Spanish Meteorological Agency (AEMET).
Our meteorological model is based on the regression model developed by AB and JS, and it is tuned with influenza surveillance data obtained from SISSS. After pre-processing this data to clean it and reconstruct missing samples, we obtain new values for the reproduction number of each urban region in Spain, every 10 minutes during 2011. We simulate the propagation of the influenza by setting the date of the epidemic onset and the initial influenza-illness rates for each urban region.
We show that the simulation results have the same propagation shape as the weekly influenza rates as recorded by SISSS. We perform experiments for a realistic scenario based on actual meteorological data from 2010-2011, and for synthetic values assumed under simplified predicted climate change conditions. Results show that a diminishing relative humidity of 10% produces an increment of about 1.6% in the final infection rate. The effect of temperature changes on the infection spread is also noticeable, with a decrease of 1.1% per extra degree.
Using a tool like ours could help predict the shape of developing epidemics and its peaks, and would permit to quickly run scenarios to determine the evolution of the epidemic under different conditions. We make EpiGraph source code and epidemic data publicly available.
预测传染病的演变细节非常有价值,因为医疗机构需要更好地规划限制感染传播效果并优化其预测和应对能力。模拟是一种具有成本效益和时间效益的预测感染演变的方法,因为它受到许多不同因素的共同影响:相互作用模式、个人特征、旅行模式、气象条件、以前的疫苗接种等。本文介绍了一种气象模型作为一个模块化组件引入到 EpiGraph 中,从而扩展了我们的流感传染病模拟器,该模型与 EpiGraph 的其他模块相互作用,以改进我们之前的模拟结果。我们的目标是根据西班牙流感监测系统(SISSS)和西班牙气象局(AEMET)提供的数据,估计温度和相对湿度变化对流感流行模式的影响。
我们的气象模型基于 AB 和 JS 开发的回归模型,并使用从 SISSS 获得的流感监测数据进行调整。对该数据进行预处理以清理数据并重建缺失样本后,我们获得了西班牙每个城市地区的每个 10 分钟的繁殖数的新值。我们通过设置每个城市地区的传染病发病日期和初始流感发病率来模拟流感的传播。
我们表明,模拟结果与 SISSS 记录的每周流感发病率具有相同的传播形状。我们针对基于 2010-2011 年实际气象数据的实际场景和假设的简化预测气候变化条件下的合成值进行了实验。结果表明,相对湿度降低 10%会使最终感染率增加约 1.6%。温度变化对感染传播的影响也很明显,每增加 1 度,感染率就会下降 1.1%。
使用像我们这样的工具可以帮助预测正在发展的传染病的形状及其高峰,并可以快速运行情景来确定在不同条件下传染病的演变。我们公开提供 EpiGraph 源代码和传染病数据。