Ram Das Athish, Pillai Nisha, Nanduri Bindu, Rothrock Michael J, Ramkumar Mahalingam
Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA.
Department of Computer Science and Engineering, Mississippi State University, Starkville, MS 39762, USA.
Microorganisms. 2024 Jun 23;12(7):1274. doi: 10.3390/microorganisms12071274.
In this study, we explore how transformer models, which are known for their attention mechanisms, can improve pathogen prediction in pastured poultry farming. By combining farm management practices with microbiome data, our model outperforms traditional prediction methods in terms of the F1 score-an evaluation metric for model performance-thus fulfilling an essential need in predictive microbiology. Additionally, the emphasis is on making our model's predictions explainable. We introduce a novel approach for identifying feature importance using the model's attention matrix and the PageRank algorithm, offering insights that enhance our comprehension of established techniques such as DeepLIFT. Our results showcase the efficacy of transformer models in pathogen prediction for food safety and mark a noteworthy contribution to the progress of explainable AI within the biomedical sciences. This study sheds light on the impact of effective farm management practices and highlights the importance of technological advancements in ensuring food safety.
在本研究中,我们探索了以注意力机制著称的Transformer模型如何能够改善牧场式家禽养殖中的病原体预测。通过将农场管理实践与微生物组数据相结合,我们的模型在F1分数(一种模型性能评估指标)方面优于传统预测方法,从而满足了预测微生物学中的一项基本需求。此外,重点在于使我们模型的预测具有可解释性。我们引入了一种使用模型注意力矩阵和PageRank算法来识别特征重要性的新方法,提供了有助于我们理解诸如DeepLIFT等既定技术的见解。我们的结果展示了Transformer模型在食品安全病原体预测中的有效性,并为生物医学科学中可解释人工智能的进展做出了显著贡献。这项研究揭示了有效农场管理实践的影响,并强调了技术进步在确保食品安全方面的重要性。