Marques Lara, Vale Nuno
PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.
CINTESIS@RISE, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
Pharmaceutics. 2024 Jun 30;16(7):881. doi: 10.3390/pharmaceutics16070881.
Interindividual variability, influenced by patient-specific factors including age, weight, gender, race, and genetics, among others, contributes to variations in therapeutic response. Population pharmacokinetic (popPK) modeling is an essential tool for pinpointing measurable factors affecting dose-concentration relationships and tailoring dosage regimens to individual patients. Herein, we developed a popPK model for salbutamol, a short-acting β-agonist (SABA) used in asthma treatment, to identify key patient characteristics that influence treatment response. To do so, synthetic data from physiologically-based pharmacokinetic (PBPK) models was employed, followed by an external validation using real patient data derived from an equivalent study. Thirty-two virtual patients were included in this study. A two-compartment model, with first-order absorption (no delay), and linear elimination best fitted our data, according to diagnostic plots and selection criteria. External validation demonstrated a strong agreement between individual predicted and observed values. The incorporation of covariates into the basic structural model identified a significant impact of age on clearance (Cl) and intercompartmental clearance (Q); gender on Cl and the constant rate of absorption (ka); race on Cl; and weight on Cl in the volume of distribution of the peripheral compartment (V2). This study addresses critical challenges in popPK modeling, particularly data scarcity, incompleteness, and homogeneity, in traditional clinical trials, by leveraging synthetic data from PBPK modeling. Significant associations between individual characteristics and salbutamol's PK parameters, here uncovered, highlight the importance of personalized therapeutic regimens for optimal treatment outcomes.
个体间的变异性受患者特定因素(包括年龄、体重、性别、种族和遗传学等)影响,导致治疗反应存在差异。群体药代动力学(popPK)建模是确定影响剂量-浓度关系的可测量因素并为个体患者量身定制给药方案的重要工具。在此,我们开发了一种用于沙丁胺醇(一种用于哮喘治疗的短效β激动剂(SABA))的popPK模型,以确定影响治疗反应的关键患者特征。为此,采用了基于生理的药代动力学(PBPK)模型的合成数据,随后使用来自等效研究的真实患者数据进行外部验证。本研究纳入了32名虚拟患者。根据诊断图和选择标准,具有一级吸收(无延迟)和线性消除的二室模型最适合我们的数据。外部验证表明个体预测值与观察值之间具有高度一致性。将协变量纳入基本结构模型后发现,年龄对清除率(Cl)和隔室间清除率(Q)有显著影响;性别对Cl和吸收恒定速率(ka)有影响;种族对Cl有影响;体重对周边室分布容积(V2)中的Cl有影响。本研究通过利用PBPK建模的合成数据,解决了传统临床试验中popPK建模面临的关键挑战,特别是数据稀缺、不完整和同质性问题。此处发现的个体特征与沙丁胺醇药代动力学参数之间的显著关联,突出了个性化治疗方案对实现最佳治疗效果的重要性。