Suppr超能文献

ODNet:一种用于少样本带钢表面缺陷分类的基于正交分解的高实时性网络。

ODNet: A High Real-Time Network Using Orthogonal Decomposition for Few-Shot Strip Steel Surface Defect Classification.

作者信息

Zhang He, Liu Han, Guo Runyuan, Liang Lili, Liu Qing, Ma Wenlu

机构信息

School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China.

School of Information Engineering, Shannxi Xueqian Normal University, Xi'an 710100, China.

出版信息

Sensors (Basel). 2024 Jul 17;24(14):4630. doi: 10.3390/s24144630.

Abstract

Strip steel plays a crucial role in modern industrial production, where enhancing the accuracy and real-time capabilities of surface defect classification is essential. However, acquiring and annotating defect samples for training deep learning models are challenging, further complicated by the presence of redundant information in these samples. These issues hinder the classification of strip steel surface defects. To address these challenges, this paper introduces a high real-time network, ODNet (Orthogonal Decomposition Network), designed for few-shot strip steel surface defect classification. ODNet utilizes ResNet as its backbone and incorporates orthogonal decomposition technology to reduce the feature redundancies. Furthermore, it integrates skip connection to preserve essential correlation information in the samples, preventing excessive elimination. The model optimizes the parameter efficiency by employing Euclidean distance as the classifier. The orthogonal decomposition not only helps reduce redundant image information but also ensures compatibility with the Euclidean distance requirement for orthogonal input. Extensive experiments conducted on the FSC-20 benchmark demonstrate that ODNet achieves superior real-time performance, accuracy, and generalization compared to alternative methods, effectively addressing the challenges of few-shot strip steel surface defect classification.

摘要

带钢在现代工业生产中起着至关重要的作用,提高表面缺陷分类的准确性和实时性至关重要。然而,获取和标注用于训练深度学习模型的缺陷样本具有挑战性,这些样本中存在的冗余信息使情况更加复杂。这些问题阻碍了带钢表面缺陷的分类。为了应对这些挑战,本文介绍了一种用于少样本带钢表面缺陷分类的高实时性网络ODNet(正交分解网络)。ODNet以ResNet作为其骨干网络,并采用正交分解技术来减少特征冗余。此外,它集成了跳跃连接以保留样本中的基本相关信息,防止过度消除。该模型通过采用欧几里得距离作为分类器来优化参数效率。正交分解不仅有助于减少冗余图像信息,还确保与正交输入的欧几里得距离要求兼容。在FSC-20基准上进行的大量实验表明,与其他方法相比,ODNet具有卓越的实时性能、准确性和泛化能力,有效解决了少样本带钢表面缺陷分类的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e10/11280595/7a5d506aabc3/sensors-24-04630-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验