Suppr超能文献

基于改进YOLOv7的轻质带钢缺陷检测算法

Lightweight strip steel defect detection algorithm based on improved YOLOv7.

作者信息

Lu Jianbo, Yu MiaoMiao, Liu Junyu

机构信息

Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision, Nanning Normal University, Nanning, 530001, China.

School of Computer and Information Engineering, Nanning Normal University, Nanning, 530100, China.

出版信息

Sci Rep. 2024 Jun 10;14(1):13267. doi: 10.1038/s41598-024-64080-x.

Abstract

The precise identification of surface imperfections in steel strips is crucial for ensuring steel product quality. To address the challenges posed by the substantial model size and computational complexity in current algorithms for detecting surface defects in steel strips, this paper introduces SS-YOLO (YOLOv7 for Steel Strip), an enhanced lightweight YOLOv7 model. This method replaces the CBS module in the backbone network with a lightweight MobileNetv3 network, reducing the model size and accelerating the inference time. The D-SimSPPF module, which integrates depth separable convolution and a parameter-free attention mechanism, was specifically designed to replace the original SPPCSPC module within the YOLOv7 network, expanding the receptive field and reducing the number of network parameters. The parameter-free attention mechanism SimAM is incorporated into both the neck network and the prediction output section, enhancing the ability of the model to extract essential features of strip surface defects and improving detection accuracy. The experimental results on the NEU-DET dataset show that SS-YOLO achieves a 97% mAP50 accuracy, which is a 4.5% improvement over that of YOLOv7. Additionally, there was a 79.3% reduction in FLOPs(G) and a 20.7% decrease in params. Thus, SS-YOLO demonstrates an effective balance between detection accuracy and speed while maintaining a lightweight profile.

摘要

精确识别钢带表面缺陷对于确保钢铁产品质量至关重要。为应对当前钢带表面缺陷检测算法中模型规模巨大和计算复杂度高所带来的挑战,本文介绍了SS - YOLO(用于钢带的YOLOv7),这是一种增强的轻量级YOLOv7模型。该方法用轻量级的MobileNetv3网络替换主干网络中的CBS模块,减小了模型规模并加快了推理时间。专门设计的D - SimSPPF模块集成了深度可分离卷积和无参数注意力机制,用于替换YOLOv7网络中的原始SPPCSPC模块,扩大了感受野并减少了网络参数数量。无参数注意力机制SimAM被纳入颈部网络和预测输出部分,增强了模型提取钢带表面缺陷关键特征的能力并提高了检测精度。在NEU - DET数据集上的实验结果表明,SS - YOLO实现了97%的mAP50精度,比YOLOv7提高了4.5%。此外,浮点运算次数(FLOPs(G))减少了79.3%,参数减少了20.7%。因此,SS - YOLO在保持轻量级的同时,在检测精度和速度之间实现了有效平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ec/11164880/70b0995dc61f/41598_2024_64080_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验