Zhang Hanxin, Sun Qian, Xu Ke
Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China.
Sensors (Basel). 2023 Oct 4;23(19):8243. doi: 10.3390/s23198243.
Online surface inspection systems have gradually found applications in industrial settings. However, the manual effort required to sift through a vast amount of data to identify defect images remains costly. This study delves into a self-supervised binary classification algorithm for addressing the task of defect image classification within ductile cast iron pipe (DCIP) images. Leveraging the CutPaste-Mix data augmentation strategy, we combine defect-free data with enhanced data to input into a deep convolutional neural network. Through Gaussian Density Estimation, we compute anomaly scores to achieve the classification of abnormal regions. Our approach has been implemented in real-world scenarios, involving equipment installation, data collection, and experimentation. The results demonstrate the robust performance of our method, in both the DCIP image dataset and practical field application, achieving an impressive 99.5 AUC (Area Under Curve). This presents a cost-effective means of providing data support for subsequent DCIP surface inspection model training.
在线表面检测系统已逐渐在工业环境中得到应用。然而,通过人工筛选大量数据来识别缺陷图像的成本仍然很高。本研究深入探讨了一种自监督二元分类算法,用于解决球墨铸铁管(DCIP)图像中的缺陷图像分类任务。利用CutPaste-Mix数据增强策略,我们将无缺陷数据与增强数据相结合,输入到深度卷积神经网络中。通过高斯密度估计,我们计算异常分数以实现对异常区域的分类。我们的方法已在实际场景中实施,包括设备安装、数据收集和实验。结果表明,我们的方法在DCIP图像数据集和实际现场应用中均具有强大的性能,实现了令人印象深刻的99.5 AUC(曲线下面积)。这为后续DCIP表面检测模型训练提供了一种经济高效的数据支持手段。