Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
University of Lausanne, 1015 Lausanne, Switzerland.
Cells Dev. 2024 Sep;179:203942. doi: 10.1016/j.cdev.2024.203942. Epub 2024 Jul 25.
Apical extracellular matrix (aECM) covers every surface of the body and exhibits tissue-specific structures that carry out specialized functions. This is particularly striking at sense organs, where aECM forms the interface between sensory neurons and the environment, and thus plays critical roles in how sensory stimuli are received. Here, we review the extraordinary adaptations of aECM across sense organs and discuss how differences in protein composition and matrix structure assist in sensing mechanical forces (tactile hairs, campaniform sensilla, and the tectorial membrane of the cochlea); tastes and smells (uniporous gustatory sensilla and multiporous olfactory sensilla in insects, and salivary and olfactory mucus in vertebrates); and light (cuticle-derived lenses in arthropods and mollusks). We summarize the power of using C. elegans, in which defined sense organs associate with distinct aECM, as a model for understanding the tissue-specific structural and functional specializations of aECM. Finally, we synthesize results from recent studies in C. elegans and Drosophila into a conceptual framework for aECM patterning, including mechanisms that involve transient cellular or matrix scaffolds, mechanical pulling or pushing forces, and localized secretion or endocytosis.
细胞外顶端基质(aECM)覆盖身体的每个表面,并表现出具有特定组织结构的功能。这在感觉器官中尤为明显,在那里 aECM 形成感觉神经元与环境之间的界面,因此在感觉刺激的接收中起着关键作用。在这里,我们回顾了 across sense organs 中 aECM 的非凡适应性,并讨论了蛋白质组成和基质结构的差异如何有助于感知机械力(触觉毛、杯状感觉器和耳蜗的盖膜);味觉和嗅觉(昆虫中的单孔味觉感受器和多孔嗅觉感受器,以及脊椎动物的唾液和嗅觉粘液);和光(节肢动物和软体动物的甲壳衍生透镜)。我们总结了使用具有明确感觉器官与不同 aECM 相关联的秀丽隐杆线虫作为理解 aECM 组织特异性结构和功能特化模型的力量。最后,我们将秀丽隐杆线虫和果蝇的最新研究结果综合到一个 aECM 模式形成的概念框架中,包括涉及瞬时细胞或基质支架、机械牵拉或推挤力以及局部分泌或内吞作用的机制。