Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK; Centre for Biostatistics, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
Division of Informatics, Imaging and Data Sciences, Centre for Health Informatics, University of Manchester, Manchester, UK.
J Clin Epidemiol. 2024 Oct;174:111481. doi: 10.1016/j.jclinepi.2024.111481. Epub 2024 Jul 25.
Multicategory prediction models (MPMs) can be used in health care when the primary outcome of interest has more than two categories. The application of MPMs is scarce, possibly due to added methodological complexities compared to binary outcome models. We provide a guide of how to develop, validate, and update clinical prediction models based on multinomial logistic regression.
We present guidance and recommendations based on recent methodological literature, illustrated by a previously developed and validated MPM for treatment outcomes in rheumatoid arthritis. Prediction models using multinomial logistic regression can be developed for nominal outcomes, but also for ordinal outcomes. This article is intended to supplement existing general guidance on prediction model research.
This guide is split into three parts: 1) outcome definition and variable selection, 2) model development, and 3) model evaluation (including performance assessment, internal and external validation, and model recalibration). We outline how to evaluate and interpret the predictive performance of MPMs. R code is provided.
We recommend the application of MPMs in clinical settings where the prediction of a multicategory outcome is of interest. Future methodological research could focus on MPM-specific considerations for variable selection and sample size criteria for external validation.
多类别预测模型(MPMs)可用于医疗保健领域,当主要感兴趣的结局有两个以上类别时。MPMs 的应用较少,可能是因为与二分类结局模型相比,其方法学更为复杂。我们提供了一种基于多项逻辑回归开发、验证和更新临床预测模型的指南。
我们基于最近的方法学文献提出了指导意见和建议,并用先前开发和验证的类风湿关节炎治疗结局 MPM 进行了说明。可使用多项逻辑回归开发名义结局的预测模型,也可开发有序结局的预测模型。本文旨在补充现有预测模型研究的一般指南。
本指南分为三个部分:1)结局定义和变量选择,2)模型开发,和 3)模型评估(包括性能评估、内部和外部验证以及模型再校准)。我们概述了如何评估和解释 MPM 的预测性能。提供了 R 代码。
我们建议在主要感兴趣的是多类别结局预测的临床环境中应用 MPMs。未来的方法学研究可以集中在 MPM 特定的变量选择和外部验证的样本量标准方面。