Suppr超能文献

一种基于多轴差分光学吸收光谱测量反演对流层臭氧垂直分布的卷积神经网络方法。

A convolutional neural networks method for tropospheric ozone vertical distribution retrieval from Multi-AXis Differential Optical Absorption Spectroscopy measurements.

作者信息

Wang Zijie, Tian Xin, Xie Pinhua, Xu Jin, Zheng Jiangyi, Pan Yifeng, Zhang Tianshu, Fan Guangqiang

机构信息

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.

出版信息

Sci Total Environ. 2024 Nov 15;951:175049. doi: 10.1016/j.scitotenv.2024.175049. Epub 2024 Jul 26.

Abstract

The vertical distribution of tropospheric ozone (O) is crucial for understanding atmospheric physicochemical processes. A Convolutional Neural Networks (CNN) method for the retrieval of tropospheric O vertical distribution from ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements to tackle the issue of stratospheric O absorption interference faced by MAX-DOAS in obtaining tropospheric O profiles. Firstly, a hybrid model, named PCA-F_Regression-SVR, is developed to screen features sensitive to O inversion based on the MAX-DOAS spectra and EAC4 reanalysis O profiles, which incorporates Principal Component Analysis (PCA), F_Regression function, and Support Vector Regression (SVR) algorithm. Thus, these screened features for ancillary inversion include the profiles of temperature, specific humidity, fraction of cloud coverage, eastward and northward wind, the profiles of SO, NO, and HCHO, as well as season and time features to serve as sensitive factors. Secondly, the preprocessed MAX-DOAS spectra dataset and the sensitive factor dataset are utilized as input, while the O profiles of the EAC4 reanalysis dataset incorporating the surface O concentrations are employed as output for constructing the CNN model. The Mean Absolute Percentage Error (MAPE) decreases from 26 % to approximately 19 %. Finally, the CNN model is applied for inversion and comparison of tropospheric O profiles using independent input data. The CNN model effectively reproduces the O profiles of the EAC4 dataset, showing a Gaussian-like spatial distribution with peaks primarily around 950 hPa (550 m). Since the reanalysis data used for model training has been smoothed, the CNN model is insensitive to extreme values. This behavior can be attributed to the MAPE loss function, which evaluates Absolute Percentage Errors (APEs) of O₃ concentration at all altitudes, resulting in varying retrieval accuracy across different altitudes while maintaining overall MAPE control. Temporally, the CNN model tends to overestimate surface O in summer by around 20 μg/m, primarily due to the influence of the temperature feature in the sensitivity factor dataset. In conclusion, leveraging MAX-DOAS spectra enables the retrieval of tropospheric O vertical distribution through the established CNN model.

摘要

对流层臭氧(O)的垂直分布对于理解大气物理化学过程至关重要。本文提出一种卷积神经网络(CNN)方法,用于从地基多轴差分光学吸收光谱(MAX-DOAS)测量中反演对流层O的垂直分布,以解决MAX-DOAS在获取对流层O廓线时面临的平流层O吸收干扰问题。首先,基于MAX-DOAS光谱和EAC4再分析O廓线,开发了一种名为PCA-F_Regression-SVR的混合模型,用于筛选对O反演敏感的特征,该模型结合了主成分分析(PCA)、F_Regression函数和支持向量回归(SVR)算法。因此,这些用于辅助反演的筛选特征包括温度、比湿、云覆盖率、东风和北风廓线,SO、NO和HCHO廓线,以及季节和时间特征作为敏感因子。其次,将预处理后的MAX-DOAS光谱数据集和敏感因子数据集作为输入,同时将包含地面O浓度的EAC4再分析数据集的O廓线作为输出,构建CNN模型。平均绝对百分比误差(MAPE)从26%降至约19%。最后,使用独立输入数据将CNN模型应用于对流层O廓线的反演和比较。CNN模型有效地再现了EAC4数据集的O廓线,呈现出类似高斯的空间分布,峰值主要出现在950 hPa(550 m)左右。由于用于模型训练的再分析数据已经过平滑处理,CNN模型对极端值不敏感。这种行为可归因于MAPE损失函数,它评估了所有高度上O₃浓度的绝对百分比误差(APE),导致不同高度的反演精度不同,同时保持整体MAPE控制。在时间上,CNN模型在夏季往往会高估地面O约20 μg/m,这主要是由于敏感因子数据集中温度特征的影响。总之,利用MAX-DOAS光谱通过建立的CNN模型能够反演对流层O的垂直分布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验