Suppr超能文献

基于 MAX-DOAS 观测的机器学习模型叠加技术实现从地面到同温层顶的高时间-高度-分辨率臭氧廓线反演。

Stacking Machine Learning Models Empowered High Time-Height-Resolved Ozone Profiling from the Ground to the Stratopause Based on MAX-DOAS Observation.

机构信息

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

Institute of Eco-Chongming (IEC), Shanghai 202162, China.

出版信息

Environ Sci Technol. 2024 Apr 30;58(17):7433-7444. doi: 10.1021/acs.est.3c09099. Epub 2024 Apr 17.

Abstract

Ozone (O) profiles are crucial for comprehending the intricate interplay among O sources, sinks, and transport. However, conventional O monitoring approaches often suffer from limitations such as low spatiotemporal resolution, high cost, and cumbersome procedures. Here, we propose a novel approach that combines multiaxis differential optical absorption spectroscopy (MAX-DOAS) and machine learning (ML) technology. This approach allows the retrieval of O profiles with exceptionally high temporal resolution at the minute level and vertical resolution reaching the hundred-meter scale. The ML models are trained using parameters obtained from radiative transfer modeling, MAX-DOAS observations, and a reanalysis data set. To enhance the accuracy of retrieving the aqueous phosphorus from O, we employ a stacking approach in constructing ML models. The retrieved MAX-DOAS O profiles are compared to data from an in situ instrument, lidar, and satellite observation, demonstrating a high level of consistency. The total error of this approach is estimated to be within 25%. On balance, this study is the first ground-based passive remote sensing of high time-height-resolved O distribution from ground to the stratopause (0-60 km). It opens up new avenues for enhancing our understanding of the dynamics of O in atmospheric environments. Moreover, the cost-effective and portable MAX-DOAS combined with this versatile profiling approach enables the potential for stereoscopic observations of various trace gases across multiple platforms.

摘要

臭氧(O)廓线对于理解 O 源、汇和传输之间的复杂相互作用至关重要。然而,传统的 O 监测方法通常存在时空分辨率低、成本高和程序繁琐等局限性。在这里,我们提出了一种将多轴差分光学吸收光谱(MAX-DOAS)和机器学习(ML)技术相结合的新方法。该方法可以以分钟级的极高时间分辨率和达到百米级的垂直分辨率来反演 O 廓线。ML 模型是使用辐射传输建模、MAX-DOAS 观测和再分析数据集获得的参数进行训练的。为了提高从 O 中反演溶解磷的准确性,我们在构建 ML 模型时采用了堆叠方法。将反演得到的 MAX-DOAS O 廓线与原位仪器、激光雷达和卫星观测的数据进行比较,结果表明具有很高的一致性。该方法的总误差估计在 25%以内。总的来说,本研究是首次从地面到平流层顶(0-60 公里)进行高时间-高度-分辨率的 O 分布的地基被动遥感。它为我们深入了解大气环境中 O 的动力学提供了新的途径。此外,结合这种多功能的廓线反演方法,具有成本效益和便携性的 MAX-DOAS 可以实现多个平台上各种痕量气体的立体观测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验