School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong Special administrative regions of China.
Int J Med Inform. 2024 Nov;191:105553. doi: 10.1016/j.ijmedinf.2024.105553. Epub 2024 Jul 20.
Acute kidney injury (AKI) is associated with increased mortality in critically ill patients. Due to differences in the etiology and pathophysiological mechanism, the current AKI criteria put it an embarrassment to evaluate clinical therapy and prognosis.
We aimed to identify subphenotypes based on routinely collected clinical data to expose the unique pathophysiologic patterns.
A retrospective study was conducted based on the Medical Information Mart for Intensive Care IV (MIMIC-IV) and the eICU Collaborative Research Database (eICU-CRD), and a deep clustering approach was conducted to derive subphenotypes. We conducted further analysis to uncover the underlying clinical patterns and interpret the subphenotype derivation.
We studied 14,189 and 19,382 patients with AKI within 48 h of ICU admission in the two datasets, respectively. Through our approach, we identified seven distinct AKI subphenotypes with mortality heterogeneity in each cohort. These subphenotypes displayed significant variations in demographics, comorbidities, levels of laboratory measurements, and survival patterns. Notably, the subphenotypes could not be effectively characterized using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria alone. Therefore, we uncovered the unique underlying characteristics of each subphenotype through model-based interpretation. To assess the usability of the subphenotypes, we conducted an evaluation, which yielded a micro-Area Under the Receiver Operating Characteristic (AUROC) of 0.81 in the single-center cohort and 0.83 in the multi-center cohort within 48-hour of admission.
We derived highly characteristic, interpretable, and usable AKI subphenotypes that exhibited superior prognostic values.
急性肾损伤(AKI)与危重症患者的死亡率增加有关。由于病因和病理生理机制的不同,目前的 AKI 标准在评估临床治疗和预后方面存在尴尬。
我们旨在基于常规收集的临床数据识别亚表型,以揭示独特的病理生理模式。
本研究基于医疗信息重症监护 IV (MIMIC-IV)和 eICU 协作研究数据库(eICU-CRD)进行回顾性研究,并采用深度聚类方法来推导亚表型。我们进一步进行了分析,以揭示潜在的临床模式并解释亚表型的推导。
我们在两个数据集的 ICU 入院后 48 小时内分别研究了 14189 例和 19382 例 AKI 患者。通过我们的方法,我们在每个队列中识别出了七个不同的 AKI 亚表型,这些亚表型在死亡率方面存在异质性。这些亚表型在人口统计学、合并症、实验室测量水平和生存模式方面存在显著差异。值得注意的是,仅使用肾脏病:改善全球结局(KDIGO)标准无法有效地描述这些亚表型。因此,我们通过基于模型的解释揭示了每个亚表型的独特潜在特征。为了评估亚表型的可用性,我们进行了评估,在单中心队列中,亚表型在入院后 48 小时的微接收器操作特征曲线下面积(AUROC)为 0.81,在多中心队列中为 0.83。
我们推导了高度特征化、可解释和可用的 AKI 亚表型,这些亚表型具有优异的预后价值。